Zhou Xin, Zhang Wenjuan, Zhang Yijun, et al. Characteristics of lightning scales and optical property in tropical cyclones over the Northwest Pacific. J Appl Meteor Sci, 2022, 33(1): 69-79. DOI:  10.11898/1001-7313.20220106.
Citation: Zhou Xin, Zhang Wenjuan, Zhang Yijun, et al. Characteristics of lightning scales and optical property in tropical cyclones over the Northwest Pacific. J Appl Meteor Sci, 2022, 33(1): 69-79. DOI:  10.11898/1001-7313.20220106.

Characteristics of Lightning Scales and Optical Property in Tropical Cyclones over the Northwest Pacific

DOI: 10.11898/1001-7313.20220106
  • Received Date: 2021-10-12
  • Rev Recd Date: 2021-12-03
  • Publish Date: 2022-01-19
  • Tropical cyclone is one of the major weather disasters affecting coastal areas, which can produce high winds and heavy rains, posing serious threats to the safety of people's lives and property in coastal areas. China is in the Northwest Pacific, which is affected more frequently by tropical cyclones than any other area in the world. Therefore, it is of great significance to strengthen the research on tropical cyclone in the Northwest Pacific. In recent years, observations and studies have proved that lightning activity often occurs in tropical cyclone, which is closely related to the convective evolution and intensity variation of tropical cyclone. Based on data of lightning imaging sensor (LIS) carried on the TRMM (Tropical Rainfall Measuring Mission) satellite during 1998-2014, the characteristics of lightning properties (including duration, extended distance, channel area and optical radiant energy) of tropical cyclone in the Northwest Pacific are studied by establishing the lightning dataset of tropical cyclone in the region. The results show that all attributes of tropical cyclone lightning present lognormal distribution characteristics, and the distribution of peak values of these attributes is consistent with that of the Northwest Pacific thunderstorm system, but different from that of East Asia land thunderstorm system. The maximum of tropical cyclone lightning tends to occur over the ocean at tropical depression intensity levels. The maximum proportion of lightning in the outer rain belt is the lowest, while the maximum proportion of the duration and optical radiant energy of lightning in the inner core is the highest. The tropical cyclone lightning duration of different intensity levels has no significant difference, but the mean value of lightning spatial scale and optical radiation energy of tropical storm are lower than those of tropical depression and typhoon. For different areas of tropical cyclone, the maximum value of duration and optical radiant energy of core lightning decrease with the increase of distance between lightning and tropical cyclone center. In terms of maritime-continental contrasts, tropical cyclone lightning occurs over the ocean with larger spatial scale and stronger optical radiant energy than that over the land, while lightning duration is roughly the same. After tropical cyclone landing, the spatial scale of lightning decreases and the optical radiant energy of lightning weakens. Compared with non-tropical cyclone lightning, tropical cyclone lightning has shorter extension distance, narrower channel area and weaker optical radiant energy, but the average duration of lightning is longer.
  • Fig. 1  The center position of individual tropical cyclone overpass observed by LIS during 1998-2014

    Fig. 2  Probability (the column) and cumulative probability (the curve) distributions of tropical cyclone lightning parameters at different intensity levels

    Fig. 3  Probability (the column) and cumulative probability (the curve) distributions of lightning parameters in different areas of tropical cyclone

    Fig. 4  Lightning attributes at different tropical cyclone intensity levels

    (the bottom and top edges of the box denote the 25th and 75th percentiles, respectively; the horizontal line in the box denotes the median value, and the diamond denotes the average value)

    Fig. 5  Lightning attributes in different tropical cyclone regions

    (the bottom and top edges of the box denote the 25th and 75th percentiles, respectively; the horizontal line in the box denotes the median value, and the diamond denotes the average value)

    Fig. 6  Lightning attributes for tropical cyclones on land and ocean

    (the bottom and top edges of the box denote the 25th and 75th percentiles, respectively; the horizontal line in the box denotes the median value, and the diamond denotes the average value)

    Table  1  Lightning attribute parameters

    参量 物理含义
    发生时间 单次LIS闪电第1个事件发生时间
    发生位置 单次LIS闪电经过光辐射能加权平均后的中心点经纬度
    光辐射能 单次LIS闪电包含的所有事件光辐射能之和(单位:J·m-2·sr-1·μm-1)
    持续时间 单次LIS闪电的第1组与最后1组间的时间差(单位: s)
    通道面积 单次LIS探测到的亮度超过背景光辐射能阈值的非重叠事件像素面积之和(单位:km2)
    延展距离 单次LIS闪电包含的所有事件中相距最远两个事件的距离(单位:km)
    DownLoad: Download CSV

    Table  2  Proportion of the number of extreme lightning to the total number of lightning within tropical cyclones in different categories (unit: %)

    闪电属性 热带气旋强度等级 热带气旋区域
    热带低压 热带风暴 台风 内核 内雨带 外雨带
    持续时间 11.32 10.08 8.69 18.13 10.72 9.24
    延展距离 12.70 8.72 9.73 11.35 11.42 9.74
    通道面积 12.03 8.88 10.36 9.92 10.55 9.95
    光辐射能 13.31 8.69 9.66 14.87 12.22 9.36
    DownLoad: Download CSV

    Table  3  Comparisons of attribute parameter for lightning in tropical cyclone and non-tropical cyclone

    闪电属性 热带气旋 非热带气旋
    陆地 海洋 陆地 海洋
    持续时间/s 0.35 0.35 0.30 0.34
    延展距离/km 17.48 19.63 18.55 20.86
    通道面积/km2 326.54 388.42 354.58 416.63
    光辐射能/(J·m-2·sr-1·μm-1) 0.66 0.84 0.78 1.23
    DownLoad: Download CSV
  • [1]
    Cao X C, Yuan Q Z, Yang J L, et al. Features of the tropical cyclones landing on China in 2005. J Appl Meteor Sci, 2007, 18(3): 412-416. doi:  10.3969/j.issn.1001-7313.2007.03.019
    [2]
    Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi:  10.3969/j.issn.1001-7313.2009.06.017
    [3]
    May P T. The organization of convection in the rainbands of tropical cyclone Laurence. Mon Wea Rev, 1996, 124(5): 807-815. doi:  10.1175/1520-0493(1996)124<0807:TOOCIT>2.0.CO;2
    [4]
    Xu W H, Ni Y Q. A strong mesoscale convective process in landfalling typhoon. J Appl Meteor Sci, 2009, 20(3): 267-275. doi:  10.3969/j.issn.1001-7313.2009.03.002
    [5]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [6]
    Molinari J, Moore P, Idone V. Convective structure of hurricanes as revealed by lightning locations. Mon Wea Rev, 1999, 127(4): 520-534. doi:  10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2
    [7]
    Wang Y, Zheng D, Zhang Y J. Typhoon processes making landfall in China from 2000 to 2007. J Appl Meteor Sci, 2011, 22(3): 321-328. doi:  10.3969/j.issn.1001-7313.2011.03.008
    [8]
    DeMaria M, DeMaria R T, Knaff J A, et al. Tropical cyclone lightning and rapid intensity change. Mon Wea Rev, 2012, 140(6): 1828-1842. doi:  10.1175/MWR-D-11-00236.1
    [9]
    Zhang W J, Zhang Y J, Zheng D, et al. Relationship between lightning activity and tropical cyclone intensity over the Northwest Pacific. J Geophys Res Atmos, 2015, 120(9): 4072-4089. doi:  10.1002/2014JD022334
    [10]
    Wang F, Qie X S, Cui X D. Climatological characteristics of tropical cyclone lightning activity in the Northwest Pacific and its relationship with cyclone intensity changes. Chinese J Atmos Sci, 2017, 41(6): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706004.htm
    [11]
    Zhang W J, Zhang Y J, Zheng D, et al. An overview on the research of lightning activity in tropical cyclones. J Marine Meteor, 2021, 41(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202103001.htm
    [12]
    Lei X T, Zhang Y J, Ma M. Preliminary analysis of lightning characteristics of thermoelectric cyclones in the Northwest Pacific and their relationship with intensity. Acta Oceanol Sinica, 2009, 31(4): 29-38. doi:  10.3321/j.issn:0253-4193.2009.04.004
    [13]
    Yang M R, Yuan T, Qie X S, et al. Analysis of lightning activity, radar reflectance and ice scattering signal characteristics of tropical cyclone in the Northwest Pacific. Acta Meteor Sinica, 2011, 69(2): 370-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201102016.htm
    [14]
    Zhang W J, Zhang Y J, Zheng D, et al. Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon Wea Rev, 2012, 140(11): 3573-3586. doi:  10.1175/MWR-D-11-00347.1
    [15]
    Yang N, Zhang Q L. Relationship between the maximum winds and lightning activity of 55 typhoons over the Western Pacific during 2005 and 2010. Trans Atmos Sci, 2012, 35(4): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201204004.htm
    [16]
    Pan L, Qie X, Wang D. Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv Atmos Sci, 2014, 31(3): 581-592. doi:  10.1007/s00376-013-3115-y
    [17]
    Kong X, Zhao Y, Qiu Z, et al. A simple method for predicting intensity change using the peak time lag between lightning and wind in tropical cyclones. Geophys Res Lett, 2021, 48. DOI:  10.1029/2020GL088872.
    [18]
    Peterson M, Liu C. Characteristics of lightning flashes with exceptional illuminated areas, durations, and optical powers and surrounding storm properties in the tropics and inner subtropics. J Geophys Res Atmos, 2013, 118(20): 11727-11740. doi:  10.1002/jgrd.50715
    [19]
    Beirle S, Koshak W, Blakeslee R, et al. Global patterns of lightning properties derived by OTD and LIS. Nat Hazards Earth Syst Sci, 2014, 14(10): 2715-2726. doi:  10.5194/nhess-14-2715-2014
    [20]
    Peterson M, Deierling W, Liu C, et al. The properties of optical lightning flashes and the clouds they illuminate. J Geophys Res Atmos, 2017, 122(1): 423-442. doi:  10.1002/2016JD025312
    [21]
    Bruning E C, MacGorman D R. Theory and observations of controls on lightning flash size spectra. J Atmos Sci, 2013, 70(12): 4012-4029. doi:  10.1175/JAS-D-12-0289.1
    [22]
    Zheng D, MacGorman D R. Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos Res, 2016, 167: 249-264. doi:  10.1016/j.atmosres.2015.08.015
    [23]
    Zhang Z, Zheng D, Zhang Y, et al. Spatial-temporal characteristics of lightning flash size in a supercell storm. Atmos Res, 2017, 197(11): 201-210.
    [24]
    Qie X S, Zhou Y J, Yuan T. Global lightning activities and their regional differences observed from the satellite. Chinese J Geophys, 2003, 46(6): 743-750. doi:  10.3321/j.issn:0001-5733.2003.06.004
    [25]
    Dai J H, Qin H, Zheng J. Analysis of lightning activity over the Yangtze River Delta using TRMM/LIS observations. J Appl Meteor Sci, 2005, 16(6): 728-736. doi:  10.3969/j.issn.1001-7313.2005.06.003
    [26]
    Zhao S S, Gao G, Sun X G, et al. Climatological characteristics of tropical cyclones in the Northwestern Pacific. J Appl Meteor Sci, 2009, 20(5): 555-563. doi:  10.3969/j.issn.1001-7313.2009.05.006
    [27]
    Xu W, Rutledge S A, Zhang W. Relationships between total lightning, deep convection, and tropical cyclone intensity change. Geophys Res Atmos, 2017, 122(13): 7047-7063. doi:  10.1002/2017JD027072
    [28]
    You J, Zheng D, Yao W, et al. Spatio-temporal scale and optical radiance of flashes over East Asia and Western Pacific areas. J Appl Meteor Sci, 2019, 30(2): 191-202. doi:  10.11898/1001-7313.20190206
    [29]
    Zheng D, Zhang Y, Meng Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J Geophys Res Atmos, 2018, 123(22): 12857-12876.
    [30]
    Duran P, Schultz C J, Bruning E C, et al. The evolution of lightning flash density, flash size, and flash energy during Hurricane Dorian's(2019) intensification and weakening. Geophys Res Lett, 2021, 48, e2020GL092067. DOI:  10.1029/2020GL092067.
    [31]
    Ringhausen J S, Bitzer P M. An in-depth analysis of lightning trends in Hurricane Harvey using satellite and ground-based measurements. J Geophys Res Atmos, 2021, 126, e2020JD032-859. DOI:  10.1029/2020JD032859.
    [32]
    Fierro A O, Mansell E R. Relationships between electrification and storm-scale properties based on idealized simulations of an intensifying hurricane-like vortex. J Atmos Sci, 2018, 75(2): 657-674. doi:  10.1175/JAS-D-17-0202.1
    [33]
    Yan J Y. Climatological characteristics of rapidly intensifying tropical cyclones over the offshore of China. J Appl Meteor Sci, 1996, 7(1): 28-35. http://qikan.camscma.cn/article/id/19960104
    [34]
    Christian H J, Blakeslee R J, Boccippio D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res Atmos, 2003, 108(D1). DOI:  10.1029/2002JD002347.
    [35]
    You J, Zheng D, Zhang Y J, et al. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations. Atmos Res, 2019, 223: 98-113. doi:  10.1016/j.atmosres.2019.03.013
    [36]
    Black R A, Hallett J. Electrification of the hurricane. J Atmos Sci, 2010, 56(12): 2004-2028.
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(3)

    Article views (1137) PDF downloads(65) Cited by()
    • Received : 2021-10-12
    • Accepted : 2021-12-03
    • Published : 2022-01-19

    /

    DownLoad:  Full-Size Img  PowerPoint