参量 | 物理含义 |
发生时间 | 单次LIS闪电第1个事件发生时间 |
发生位置 | 单次LIS闪电经过光辐射能加权平均后的中心点经纬度 |
光辐射能 | 单次LIS闪电包含的所有事件光辐射能之和(单位:J·m-2·sr-1·μm-1) |
持续时间 | 单次LIS闪电的第1组与最后1组间的时间差(单位: s) |
通道面积 | 单次LIS探测到的亮度超过背景光辐射能阈值的非重叠事件像素面积之和(单位:km2) |
延展距离 | 单次LIS闪电包含的所有事件中相距最远两个事件的距离(单位:km) |
Citation: | Zhou Xin, Zhang Wenjuan, Zhang Yijun, et al. Characteristics of lightning scales and optical property in tropical cyclones over the Northwest Pacific. J Appl Meteor Sci, 2022, 33(1): 69-79. DOI: 10.11898/1001-7313.20220106. |
Table 1 Lightning attribute parameters
参量 | 物理含义 |
发生时间 | 单次LIS闪电第1个事件发生时间 |
发生位置 | 单次LIS闪电经过光辐射能加权平均后的中心点经纬度 |
光辐射能 | 单次LIS闪电包含的所有事件光辐射能之和(单位:J·m-2·sr-1·μm-1) |
持续时间 | 单次LIS闪电的第1组与最后1组间的时间差(单位: s) |
通道面积 | 单次LIS探测到的亮度超过背景光辐射能阈值的非重叠事件像素面积之和(单位:km2) |
延展距离 | 单次LIS闪电包含的所有事件中相距最远两个事件的距离(单位:km) |
Table 2 Proportion of the number of extreme lightning to the total number of lightning within tropical cyclones in different categories (unit: %)
闪电属性 | 热带气旋强度等级 | 热带气旋区域 | |||||
热带低压 | 热带风暴 | 台风 | 内核 | 内雨带 | 外雨带 | ||
持续时间 | 11.32 | 10.08 | 8.69 | 18.13 | 10.72 | 9.24 | |
延展距离 | 12.70 | 8.72 | 9.73 | 11.35 | 11.42 | 9.74 | |
通道面积 | 12.03 | 8.88 | 10.36 | 9.92 | 10.55 | 9.95 | |
光辐射能 | 13.31 | 8.69 | 9.66 | 14.87 | 12.22 | 9.36 |
Table 3 Comparisons of attribute parameter for lightning in tropical cyclone and non-tropical cyclone
闪电属性 | 热带气旋 | 非热带气旋 | |||
陆地 | 海洋 | 陆地 | 海洋 | ||
持续时间/s | 0.35 | 0.35 | 0.30 | 0.34 | |
延展距离/km | 17.48 | 19.63 | 18.55 | 20.86 | |
通道面积/km2 | 326.54 | 388.42 | 354.58 | 416.63 | |
光辐射能/(J·m-2·sr-1·μm-1) | 0.66 | 0.84 | 0.78 | 1.23 |
[1] |
Cao X C, Yuan Q Z, Yang J L, et al. Features of the tropical cyclones landing on China in 2005. J Appl Meteor Sci, 2007, 18(3): 412-416. doi: 10.3969/j.issn.1001-7313.2007.03.019
|
[2] |
Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi: 10.3969/j.issn.1001-7313.2009.06.017
|
[3] |
May P T. The organization of convection in the rainbands of tropical cyclone Laurence. Mon Wea Rev, 1996, 124(5): 807-815. doi: 10.1175/1520-0493(1996)124<0807:TOOCIT>2.0.CO;2
|
[4] |
Xu W H, Ni Y Q. A strong mesoscale convective process in landfalling typhoon. J Appl Meteor Sci, 2009, 20(3): 267-275. doi: 10.3969/j.issn.1001-7313.2009.03.002
|
[5] |
Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606
|
[6] |
Molinari J, Moore P, Idone V. Convective structure of hurricanes as revealed by lightning locations. Mon Wea Rev, 1999, 127(4): 520-534. doi: 10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2
|
[7] |
Wang Y, Zheng D, Zhang Y J. Typhoon processes making landfall in China from 2000 to 2007. J Appl Meteor Sci, 2011, 22(3): 321-328. doi: 10.3969/j.issn.1001-7313.2011.03.008
|
[8] |
DeMaria M, DeMaria R T, Knaff J A, et al. Tropical cyclone lightning and rapid intensity change. Mon Wea Rev, 2012, 140(6): 1828-1842. doi: 10.1175/MWR-D-11-00236.1
|
[9] |
Zhang W J, Zhang Y J, Zheng D, et al. Relationship between lightning activity and tropical cyclone intensity over the Northwest Pacific. J Geophys Res Atmos, 2015, 120(9): 4072-4089. doi: 10.1002/2014JD022334
|
[10] |
Wang F, Qie X S, Cui X D. Climatological characteristics of tropical cyclone lightning activity in the Northwest Pacific and its relationship with cyclone intensity changes. Chinese J Atmos Sci, 2017, 41(6): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706004.htm
|
[11] |
Zhang W J, Zhang Y J, Zheng D, et al. An overview on the research of lightning activity in tropical cyclones. J Marine Meteor, 2021, 41(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202103001.htm
|
[12] |
Lei X T, Zhang Y J, Ma M. Preliminary analysis of lightning characteristics of thermoelectric cyclones in the Northwest Pacific and their relationship with intensity. Acta Oceanol Sinica, 2009, 31(4): 29-38. doi: 10.3321/j.issn:0253-4193.2009.04.004
|
[13] |
Yang M R, Yuan T, Qie X S, et al. Analysis of lightning activity, radar reflectance and ice scattering signal characteristics of tropical cyclone in the Northwest Pacific. Acta Meteor Sinica, 2011, 69(2): 370-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201102016.htm
|
[14] |
Zhang W J, Zhang Y J, Zheng D, et al. Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon Wea Rev, 2012, 140(11): 3573-3586. doi: 10.1175/MWR-D-11-00347.1
|
[15] |
Yang N, Zhang Q L. Relationship between the maximum winds and lightning activity of 55 typhoons over the Western Pacific during 2005 and 2010. Trans Atmos Sci, 2012, 35(4): 415-422. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201204004.htm
|
[16] |
Pan L, Qie X, Wang D. Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv Atmos Sci, 2014, 31(3): 581-592. doi: 10.1007/s00376-013-3115-y
|
[17] |
Kong X, Zhao Y, Qiu Z, et al. A simple method for predicting intensity change using the peak time lag between lightning and wind in tropical cyclones. Geophys Res Lett, 2021, 48. DOI: 10.1029/2020GL088872.
|
[18] |
Peterson M, Liu C. Characteristics of lightning flashes with exceptional illuminated areas, durations, and optical powers and surrounding storm properties in the tropics and inner subtropics. J Geophys Res Atmos, 2013, 118(20): 11727-11740. doi: 10.1002/jgrd.50715
|
[19] |
Beirle S, Koshak W, Blakeslee R, et al. Global patterns of lightning properties derived by OTD and LIS. Nat Hazards Earth Syst Sci, 2014, 14(10): 2715-2726. doi: 10.5194/nhess-14-2715-2014
|
[20] |
Peterson M, Deierling W, Liu C, et al. The properties of optical lightning flashes and the clouds they illuminate. J Geophys Res Atmos, 2017, 122(1): 423-442. doi: 10.1002/2016JD025312
|
[21] |
Bruning E C, MacGorman D R. Theory and observations of controls on lightning flash size spectra. J Atmos Sci, 2013, 70(12): 4012-4029. doi: 10.1175/JAS-D-12-0289.1
|
[22] |
Zheng D, MacGorman D R. Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos Res, 2016, 167: 249-264. doi: 10.1016/j.atmosres.2015.08.015
|
[23] |
Zhang Z, Zheng D, Zhang Y, et al. Spatial-temporal characteristics of lightning flash size in a supercell storm. Atmos Res, 2017, 197(11): 201-210.
|
[24] |
Qie X S, Zhou Y J, Yuan T. Global lightning activities and their regional differences observed from the satellite. Chinese J Geophys, 2003, 46(6): 743-750. doi: 10.3321/j.issn:0001-5733.2003.06.004
|
[25] |
Dai J H, Qin H, Zheng J. Analysis of lightning activity over the Yangtze River Delta using TRMM/LIS observations. J Appl Meteor Sci, 2005, 16(6): 728-736. doi: 10.3969/j.issn.1001-7313.2005.06.003
|
[26] |
Zhao S S, Gao G, Sun X G, et al. Climatological characteristics of tropical cyclones in the Northwestern Pacific. J Appl Meteor Sci, 2009, 20(5): 555-563. doi: 10.3969/j.issn.1001-7313.2009.05.006
|
[27] |
Xu W, Rutledge S A, Zhang W. Relationships between total lightning, deep convection, and tropical cyclone intensity change. Geophys Res Atmos, 2017, 122(13): 7047-7063. doi: 10.1002/2017JD027072
|
[28] |
You J, Zheng D, Yao W, et al. Spatio-temporal scale and optical radiance of flashes over East Asia and Western Pacific areas. J Appl Meteor Sci, 2019, 30(2): 191-202. doi: 10.11898/1001-7313.20190206
|
[29] |
Zheng D, Zhang Y, Meng Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J Geophys Res Atmos, 2018, 123(22): 12857-12876.
|
[30] |
Duran P, Schultz C J, Bruning E C, et al. The evolution of lightning flash density, flash size, and flash energy during Hurricane Dorian's(2019) intensification and weakening. Geophys Res Lett, 2021, 48, e2020GL092067. DOI: 10.1029/2020GL092067.
|
[31] |
Ringhausen J S, Bitzer P M. An in-depth analysis of lightning trends in Hurricane Harvey using satellite and ground-based measurements. J Geophys Res Atmos, 2021, 126, e2020JD032-859. DOI: 10.1029/2020JD032859.
|
[32] |
Fierro A O, Mansell E R. Relationships between electrification and storm-scale properties based on idealized simulations of an intensifying hurricane-like vortex. J Atmos Sci, 2018, 75(2): 657-674. doi: 10.1175/JAS-D-17-0202.1
|
[33] |
Yan J Y. Climatological characteristics of rapidly intensifying tropical cyclones over the offshore of China. J Appl Meteor Sci, 1996, 7(1): 28-35. http://qikan.camscma.cn/article/id/19960104
|
[34] |
Christian H J, Blakeslee R J, Boccippio D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res Atmos, 2003, 108(D1). DOI: 10.1029/2002JD002347.
|
[35] |
You J, Zheng D, Zhang Y J, et al. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations. Atmos Res, 2019, 223: 98-113. doi: 10.1016/j.atmosres.2019.03.013
|
[36] |
Black R A, Hallett J. Electrification of the hurricane. J Atmos Sci, 2010, 56(12): 2004-2028.
|