Mao Hongdan, Huo Zhiguo, Zhang Lei, et al. Indicator construction and risk assessment of grape waterlogging in the Bohai Rim. J Appl Meteor Sci, 2022, 33(1): 92-103. DOI:  10.11898/1001-7313.20220108.
Citation: Mao Hongdan, Huo Zhiguo, Zhang Lei, et al. Indicator construction and risk assessment of grape waterlogging in the Bohai Rim. J Appl Meteor Sci, 2022, 33(1): 92-103. DOI:  10.11898/1001-7313.20220108.

Indicator Construction and Risk Assessment of Grape Waterlogging in the Bohai Rim

DOI: 10.11898/1001-7313.20220108
  • Received Date: 2021-05-24
  • Rev Recd Date: 2021-06-30
  • Publish Date: 2022-01-19
  • The viticulture area around the Bohai Bay is the largest grape producing area in China. Waterlogging disaster is a major agricultural meteorological disaster in China, which seriously threatens grape production. Waterlogging indexes are utilized on field crops widely, but most of them can only be evaluated after the end of the growing season, which lacks the timeliness of monitoring and evaluating the process of waterlogging disasters. Taking the main grape producing areas in the Bohai Rim of China as the research object, the waterlogging grade index is constructed based on the daily meteorological data, grape growth stage data and grape waterlogging historical disaster data from 303 meteorological stations in the study area from 1980 to 2019. In the process of index construction, the influence of previous water surplus and deficit status on the current waterlogging process is fully considered, and the climate adaptability of crops in a certain place is considered. The daily waterlogging index of grapes is constructed by referring to the relative humidity index method of crops. Taking historical disaster inversion and disaster process analysis as the main line, Lilliefors test of normal distribution and t-distribution interval estimation method are used to construct the grape waterlogging disaster grade index system suitable for the main grape producing areas around the Bohai Bay, starting from the duration and intensity of waterlogging disaster. Based on the classification index of grape waterlogging disasters constructed above, the frequency of waterlogging disasters at each site in the Bohai Rim from 1980 to 2019 is counted, and the probability of disasters at each site is obtained by using information diffusion theory. Considering the probability and intensity of waterlogging disasters of each grade, the risk index of grape waterlogging in each station in the region is calculated. The results show that the occurrence range of waterlogging disaster in the same growth period of grape decreases with the increase of the disaster level, while the occurrence range of severe waterlogging disaster in different growth periods gradually increases with the advancement of development process. The risk of grape waterlogging is relatively low during the period of bud-shoot growth and flowering and fruit-setting, while the high-risk period of grape waterlogging is the period of fruit expansion and coloring and maturity. The high-risk areas of grape waterlogging disaster are mainly located in the southeast of Shandong Province, the southeast of Liaoning Province and the northeast of Hebei Province.
  • Fig. 1  Distribution of weather stations in target area

    Fig. 2  Identification rate of grape disaster samples under different M5i threshold

    Fig. 3  The samples percentage of grape waterlogging disasters of different grades in the total samples (M5i≥3)

    Fig. 4  Station ratio of grape waterlogging disaster probability at different grades during different growth stages

    Fig. 5  Spatial distribution of grape waterlogging disaster risk index

    Table  1  90% confidence interval of the mean value of the cumulative M5i in the process of different duration during grape growth stages

    发育阶段 90%置信区间
    3~4 d 5~6 d 7 d及以上
    萌芽-新梢生长期 12.8~32.0 27.6~74.3 41.6~98.8
    开花坐果期 12.9~32.4 25.5~68.9 42.6~116.9
    果实膨大期 13.2~33.7 25.9~71.7 44.0~128.5
    着色成熟期 13.5~36.1 28.7~85.9 45.8~153.7
    DownLoad: Download CSV

    Table  2  The grape waterlogging disaster level indicators during different growth stages

    发育阶段 M5i≥3持续日数/d M5i逐日累加值
    轻度涝渍 中度涝渍 重度涝渍
    萌芽-新梢生长期 3~4 [13, 32] 大于32
    5~6 [13, 28) [28, 74] 大于74
    不小于7 [28, 42] 大于42
    开花坐果期 3~4 [13, 32] 大于32
    5~6 [13, 26) [26, 69] 大于69
    不小于7 [26, 43] 大于43
    果实膨大期 3~4 [13, 34] 大于34
    5~6 [13, 26) [26, 72] 大于72
    不小于7 [26, 44] 大于44
    着色成熟期 3~4 [14, 36] 大于36
    5~6 [14, 29) [29, 86] 大于86
    不小于7 [29, 46] 大于46
    DownLoad: Download CSV

    Table  3  Verification of grape waterlogging disaster indicators

    发生时间 发生地点 发育阶段 灾情描述 M5i≥3持续日数/d M5i≥3逐日累加值 指标计算等级 符合程度
    2012-04-25 庄河 萌芽-新梢生长期 绝收 9 127 完全符合
    1991-06-10 北京 开花坐果期 受渍,部分绝收 5 43 完全符合
    2011-06-26 威海 开花坐果期 大量落果,减产 8 97 完全符合
    1981-07-25 熊岳 果实膨大期 严重受渍 4 40 完全符合
    1985-07-28 密云 果实膨大期 冲走果树 4 24 不符合
    1985-07-20 海城 果实膨大期 大量减产 8 103 完全符合
    1990-07-15 塘沽 果实膨大期 部分受灾 3 17 完全符合
    1993-07-12 章丘 果实膨大期 部分无收 6 46 完全符合
    1994-07-12 朝阳 果实膨大期 大面积减产 7 87 完全符合
    2004-07-16 定陶 果实膨大期 成灾 5 39 完全符合
    2008-07-18 威海 果实膨大期 受涝严重,绝收 10 98 完全符合
    2008-07-18 青岛 果实膨大期 绝收 10 127 完全符合
    2012-07-25 北京 果实膨大期 部分受灾 4 19 完全符合
    1988-08-08 北京 着色成熟期 严重受渍 5 39 完全符合
    1992-08-31 威海 着色成熟期 成灾 5 70 完全符合
    1992-09-01 大连 着色成熟期 大量减产 5 132 完全符合
    1994-08-05 昌黎 着色成熟期 冲毁,绝收 5 87 完全符合
    1994-08-05 青龙 着色成熟期 绝收 6 72 基本符合
    1996-08-04 石家庄 着色成熟期 大量减产 9 219 完全符合
    1997-08-01 承德 着色成熟期 大面积绝收 5 43 基本符合
    1997-08-18 日照 着色成熟期 部分绝收 5 65 完全符合
    1997-08-18 莒县 着色成熟期 绝收 6 112 完全符合
    1997-08-18 威海 着色成熟期 大面积减产 6 175 完全符合
    2000-08-28 青岛 着色成熟期 部分绝收 5 42 完全符合
    2008-08-01 锦州 着色成熟期 受灾 4 27 完全符合
    2011-08-08 栖霞 着色成熟期 严重落果 3 20 不符合
    DownLoad: Download CSV
  • [1]
    Liu J, Chao W J, Qi G M, et al. Booming development of Chinese grape industry. Sino-Overseas Grapevine and Wine, 2020(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-PTZP202001001.htm
    [2]
    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability Cambridge: Cambridge University Press, 2014.
    [3]
    Alexander L V, Zhang X B, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 2006, 111(D5): 1042-1063.
    [4]
    Yang J Y, Huo Z G, Wu L, et al. Evaluation level construction and analysis of risk on rice flood in Southwest China. Transactions of the CSAE, 2015, 31(16): 135-144. doi:  10.11975/j.issn.1002-6819.2015.16.019
    [5]
    Yang H Y, Huo Z G, Yang J Y, et al. Indicators and risk of spring corn waterlogging disaster in Jianghan and west region of Jiangnan. J Appl Meteor Sci, 2017, 28(2): 237-246. doi:  10.11898/1001-7313.20170211
    [6]
    Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi:  10.11898/1001-7313.20170601
    [7]
    Yang Z F, Wu Y L, Xu G F. The key producing areas and suitable varieties of grapes in China. Fruit Growers' Friend, 2007, 8(4): 39. https://www.cnki.com.cn/Article/CJFDTOTAL-GNZY200704033.htm
    [8]
    Li N, Liu Z, Gu W. Statistic analysis of average annual precipitation in the areas in and around Bohai Sea. Geographical Research, 2006, 25(6): 1022-1030. doi:  10.3321/j.issn:1000-0585.2006.06.009
    [9]
    Li Y. Study on Waterlogging Tolerance of Grape Rootstocks. Taian: Shandong Agricultural University, 2013.
    [10]
    Li H, Huo X S. Atmospheric moisture content index in climatic zoning of grapevine cultivation in China. Chinese Journal of Ecology, 2006, 25(9): 1124-1128. doi:  10.3321/j.issn:1000-4890.2006.09.022
    [11]
    Li R P. Relations between output of grape and meteorologic condition. Journal of Shanxi Agricultural Sciences, 2006, 34(3): 40-42. doi:  10.3969/j.issn.1002-2481.2006.03.013
    [12]
    Zhang X Y, Liu Y L, Zhang L, et al. Influence of meteorological conditions on some quality factors of wine grape. Chinese Journal of Agrometeorology, 2007, 28(3): 326-330. doi:  10.3969/j.issn.1000-6362.2007.03.022
    [13]
    Liu Y L, Zheng Y F, Zhang X Y. Research progress of effect of meteorological condition on wine grape quality. Sino-Overseas Grapevine and Wine, 2006(1): 28-29. doi:  10.3969/j.issn.1004-7360.2006.01.008
    [14]
    Ju X S, Yang X W, Chen L J, et al. Research on determination of station indexes and division of regional flood/drought grades in China. J Appl Meteor Sci, 1997, 8(1): 27-34. http://qikan.camscma.cn/article/id/19970104
    [15]
    Ju X S, Zou X K, Zhang Q. The method of the climatic drought-flood index and its analysis. Journal of Natural Disasters, 1998, 7(3): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH803.008.htm
    [16]
    Zhang C J, Wang B L, Liu D X, et al. Research on drought and flood indices in the Northwest China. Plateau Meteorology, 1998, 17(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX804.005.htm
    [17]
    Zhang S Y, Yao P Z, Wu H, et al. Determination of drought-flood index and distribution of drought-flood in the North of China. Journal of Natural Disasters, 1998, 7(2): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH802.003.htm
    [18]
    Wang Y, Jiang Z H, Zhang Q, et al. Evaluating aridity and wetness of the wheat with Palmer moisture anomaly index in the east of Northwest China. J Appl Meteor Sci, 2008, 19(3): 342-349. doi:  10.3969/j.issn.1001-7313.2008.03.010
    [19]
    Wang Y, Jiang Z H, Zhang Q, et al. Comparative study of Palmer's moisture anomaly index and Z index. Journal of Nanjing Institute of Meteorology, 2007, 30(3): 383-389. doi:  10.3969/j.issn.1674-7097.2007.03.014
    [20]
    Xiao N S. Meteorological Risk Assessment of Flood and Drought Disasters of Fresh Grape in Bohai Rim. Shenyang: Shenyang Agricultural University, 2020.
    [21]
    Ma Y Q, Qian Q L, Liu C M, et al. Analysis on relationship of occurrence regularity of downy mildew and meteorological factors. Sino-Overseas Grapevine and Wine, 2008(5): 35-37. doi:  10.3969/j.issn.1004-7360.2008.05.010
    [22]
    Zhang X H, Zhu H T, Yang H J, et al. Evaluation of the impact degree of waterlogging disaster in Jiangsu. Jiangsu Agricultural Sciences, 2016, 44(9): 407-411. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201609117.htm
    [23]
    Ma X Q, Wu W Y, Zhang H. The agricultural drought and flood index and its operational application to monitoring and early-warning in Jianghuai Area. J Appl Meteor Sci, 2009, 20(2): 186-194. doi:  10.3969/j.issn.1001-7313.2009.02.008
    [24]
    Sheng S X, Huo Z G, Shi L. Risk assessment and regionalization of waterlogging disaster for wheat in Jianghuai Region. Chinese Journal of Ecology, 2010, 29(5): 985-990. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201005026.htm
    [25]
    Zhang X Y. Ecological Regionalization of Wine Grape in Northern China. Beijing: China Meteorological Press, 2014.
    [26]
    Wen K G, Zang J S. Chinese Meteorological Disasters(Hebei). Beijing: China Meteorological Press, 2007.
    [27]
    Wen K G, Xie P. Chinese Meteorological Disasters(Beijing). Beijing: China Meteorological Press, 2005.
    [28]
    Wen K G, Wang Z X. Chinese Meteorological Disasters(Tianjin). Beijing: China Meteorological Press, 2008.
    [29]
    Wen K G, Wang J G, Sun D Q. Chinese Meteorological Disasters(Shandong). Beijing: China Meteorological Press, 2006.
    [30]
    Wen K G, Li B, Meng Q N. Chinese Meteorological Disasters(Liaoning). Beijing: China Meteorological Press, 2005.
    [31]
    China Meteorological Administration. China Meteorological Disasters Yearbook(2004-2019). Beijing: China Meteorological Press, 2006-2019.
    [32]
    Ma S S, Cheng T T, Tong M, et al. Analysis on meteorological disasters affecting grape growth in Yanqing Region. Modern Agricultural Science and Technology, 2018(24): 89-90. doi:  10.3969/j.issn.1007-5739.2018.24.052
    [33]
    Sun L H, Zhang T Y, Dai W. Meteorological Index and Forecast Model for the Whole Growth Period of Changli Wine Grape//Chinese Meteorological Society. Proceedings of the 28th Annual Meeting of the Chinese Meteorological Society, 2011: 1-6.
    [34]
    He N. Risk Analysis of Agricultural Drought and Flood Disaster in Anhui Province. Beijing: Chinese Academy of Meteorological Sciences, 2009.
    [35]
    Allen R G, Pereira L S, Rase D, et al. Crop Evaportranspiration Guide Lines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56, Rome, 1998.
    [36]
    Fan Y X, Huo Z G, Shang Y. Catastrophe classification indicator and yield loss analysis of oilseed rape vertical waterlogging in Hunan Province. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(9): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201909005.htm
    [37]
    Wei F Y. Modern Climatic Statistical Diagnosis and Prediction Techniques. Beijing: China Meteorological Press, 2007.
    [38]
    Li D, Qi H, Ma X Q. The climate index and assessment about drought and flood in maize's key growth stage in Huaibei Plain in Anhui Province. Chinese Agricultural Science Bulletin, 2013, 29(17): 208-216. doi:  10.11924/j.issn.1000-6850.2012-3888
    [39]
    Zhang W T. SPSS Statistical Analysis Basic Tutorial. Beijing: Higher Education Press, 2011.
    [40]
    Huang C. Priciple of inmormation diffusion. Fuzzy Sets & Systems, 1997: 91(1): 69-90.
    [41]
    Liu X L. Theory and Practice of Regional Flood Risk Assessment. Beijing: Peking University Press, 2005.
    [42]
    Zhang S J, Jiang Y H, Yang H J, et al. An hydrology-process based method for antecedent effect rainfall determination in debris flow forecasting. Advances in Water Science, 2015, 26(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201501005.htm
    [43]
    Qiu N G. Effects of meteorological disasters on apple growth in Qingyang City and countermeasures. Modern Agricultural Science and Technology, 2018(16): 84-86. doi:  10.3969/j.issn.1007-5739.2018.16.053
    [44]
    Liu Z G, Liu Z D, Xiao J F, et al. Waterlogging at seedling and jointing stages inhibits growth and development, reduces yield in summer maize. Transactions of the CSAE, 2013, 29(5): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201305009.htm
    [45]
    Yang J Y, Huo Z G, Wang P J, et al. Evaluation index construction and hazard risk assessment on apple drought in Northern China. J Appl Meteor Sci, 2021, 32(1): 25-37. doi:  10.11898/1001-7313.20210103
    [46]
    Wu L, Huo Z G, Zhang L, et al. Level indicators construction and temporal-spatial distribution features of agricultural flood in the Southwest of China. Chinese Journal of Applied Ecology, 2015, 26(8): 2473-2481. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201508030.htm
    [47]
    Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in Northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203
    [48]
    Cheng X, Sun S, Zhang Z T, et al. Spatial-temporal distribution of apples with different drought levels in Northern China. J Appl Meteor Sci, 2020, 31(4): 405-416. doi:  10.11898/1001-7313.20200403
    [49]
    Wang P J, Huo Z G, Yang J Y, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. doi:  10.11898/1001-7313.20190102
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(3)

    Article views (1458) PDF downloads(104) Cited by()
    • Received : 2021-05-24
    • Accepted : 2021-06-30
    • Published : 2022-01-19

    /

    DownLoad:  Full-Size Img  PowerPoint