空间型 | 方差贡献率 | ||
SPEI1 | SPEI3 | SPEI6 | |
A1 | 9.5 | 10.2 | 10.2 |
A2 | 9.1 | 10.4 | 11.5 |
A3 | 8.0 | 7.0 | 6.6 |
A4 | 6.3 | 6.2 | 6.4 |
A5 | 5.7 | 5.9 | 5.6 |
A6 | 6.2 | 5.7 | 5.0 |
A7 | 9.8 | 7.7 | 7.4 |
A8 | 8.9 | 10.9 | 11.1 |
Citation: | Mi Qianchuan, Gao Xining, Li Yue, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. DOI: 10.11898/1001-7313.20220109. |
Table 1 Variance contribution rate of the first 8 modes of REOF analysis among 3 groups (unit: %)
空间型 | 方差贡献率 | ||
SPEI1 | SPEI3 | SPEI6 | |
A1 | 9.5 | 10.2 | 10.2 |
A2 | 9.1 | 10.4 | 11.5 |
A3 | 8.0 | 7.0 | 6.6 |
A4 | 6.3 | 6.2 | 6.4 |
A5 | 5.7 | 5.9 | 5.6 |
A6 | 6.2 | 5.7 | 5.0 |
A7 | 9.8 | 7.7 | 7.4 |
A8 | 8.9 | 10.9 | 11.1 |
Table 2 Evaluation of 1-month lead time prediction performance of different models in test period
时间尺度 | 评价指标 | ILSTM | TLSTM | ARIMA |
SPEI1 | 相关系数 | 0.59 ± 0.03 | 0.36 ± 0.06 | 0.22 ± 0.07 |
均方根误差 | 0.89 ± 0.04 | 1.05 ± 0.07 | 1.18 ± 0.09 | |
误差绝对值的平均 | 0.66 ±0.03 | 0.86 ± 0.05 | 1.03 ± 0.08 | |
SPEI3 | 相关系数 | 0.88 ± 0.01 | 0.83 ± 0.02 | 0.72 ± 0.01 |
均方根误差 | 0.50 ± 0.02 | 0.60 ± 0.05 | 0.75 ± 0.06 | |
误差绝对值的平均 | 0.36 ± 0.02 | 0.46 ± 0.03 | 0.59 ± 0.05 | |
SPEI6 | 相关系数 | 0.93 ± 0.01 | 0.89 ± 0.02 | 0.82 ± 0.03 |
均方根误差 | 0.39 ± 0.03 | 0.46 ± 0.05 | 0.59 ± 0.07 | |
误差绝对值的平均 | 0.27 ± 0.01 | 0.33 ± 0.03 | 0.44 ± 0.05 | |
注:表中数字为平均值±1倍标准差,数值均达到0.05显著性水平,下同。 |
Table 3 Evaluation of 2-month lead time prediction performance of different models in test period
时间尺度 | 评价指标 | ILSTM | TLSTM | ARIMA |
SPEI1 | 相关系数 | 0.42 ± 0.01 | 0.27 ± 0.09 | |
均方根误差 | 0.99 ± 0.05 | 1.10 ± 0.08 | ||
误差绝对值的平均 | 0.78 ± 0.06 | 0.90 ± 0.06 | ||
SPEI3 | 相关系数 | 0.66 ± 0.04 | 0.48 ± 0.06 | 0.45 ± 0.01 |
均方根误差 | 0.81 ± 0.05 | 1.08 ± 0.08 | 1.10 ± 0.08 | |
误差绝对值的平均 | 0.63 ± 0.04 | 0.86 ± 0.07 | 0.89 ± 0.05 | |
SPEI6 | 相关系数 | 0.79 ± 0.02 | 0.66 ± 0.04 | 0.66 ± 0.06 |
均方根误差 | 0.63 ± 0.05 | 0.81 ± 0.09 | 0.84 ± 0.09 | |
误差绝对值的平均 | 0.47 ± 0.04 | 0.63 ± 0.07 | 0.62 ± 0.06 |
Table 4 Evaluation of 3-month lead time prediction performance of different models in test period
时间尺度 | 评价指标 | ILSTM | TLSTM | ARIMA |
SPEI1 | 相关系数 | 0.26 ± 0.06 | 0.17 ± 0.05 | |
均方根误差 | 1.09 ± 0.07 | 1.16 ± 0.09 | ||
误差绝对值的平均 | 0.87 ± 0.05 | 0.95 ± 0.07 | ||
SPEI3 | 相关系数 | 0.40 ± 0.06 | 0.27 ± 0.05 | |
均方根误差 | 1.02 ± 0.06 | 1.26 ± 0.11 | ||
误差绝对值的平均 | 0.80 ± 0.04 | 1.00 ± 0.91 | ||
SPEI6 | 相关系数 | 0.69 ± 0.03 | 0.44 ± 0.06 | 0.52 ± 0.07 |
均方根误差 | 0.75 ± 0.07 | 1.07 ± 0.11 | 0.90 ± 0.09 | |
误差绝对值的平均 | 0.57 ± 0.04 | 0.84 ± 0.08 | 0.71 ± 0.07 |
Table 5 Evaluation of prediction performance of the CLSTM model in test period
时间尺度 | 评价指标 | 1个月提前期 | 2个月提前期 | 3个月提前期 |
SPEI1 | 相关系数 | 0.82 ± 0.02 | 0.78 ± 0.03 | 0.70 ± 0.04 |
均方根误差 | 0.60 ± 0.04 | 0.67 ± 0.05 | 0.76 ± 0.06 | |
误差绝对值的平均 | 0.47 ± 0.03 | 0.54 ± 0.04 | 0.61 ± 0.04 | |
SPEI3 | 相关系数 | 0.94 ± 0.01 | 0.81 ± 0.04 | 0.73 ± 0.04 |
均方根误差 | 0.37 ± 0.03 | 0.61 ± 0.05 | 0.73 ± 0.05 | |
误差绝对值的平均 | 0.28 ± 0.02 | 0.49 ± 0.04 | 0.58 ± 0.05 | |
SPEI6 | 相关系数 | 0.96 ± 0.01 | 0.87 ± 0.01 | 0.77 ± 0.02 |
均方根误差 | 0.30 ± 0.02 | 0.51 ± 0.05 | 0.65 ± 0.04 | |
误差绝对值的平均 | 0.22 ± 0.01 | 0.39 ± 0.03 | 0.51 ± 0.03 |
[1] |
Dai A. Drought under global warming: A review. WIREs Clim Change, 2011, 2(1): 45-65. doi: 10.1002/wcc.81
|
[2] |
Song Y, Tian J, Linderholm H W, et al. The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. Int J Climatol, 2021, 41(Suppl Ⅰ): 2851-2862.
|
[3] |
Yao N, Li Y, Lei T, et al. Drought evolution, severity and trends in mainland China over 1961-2013. Sci Total Environ, 2018, 616/617: 73-89. doi: 10.1016/j.scitotenv.2017.10.327
|
[4] |
Zhang L, Zhou T. Drought over East Asia: A review. J Climate, 2015, 28(8): 3375-3399. doi: 10.1175/JCLI-D-14-00259.1
|
[5] |
Yao N, Li L, Feng P, et al. Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Sci Total Environ, 2020, 704: 135245. doi: 10.1016/j.scitotenv.2019.135245
|
[6] |
Zhao T, Dai A. Uncertainties in historical changes and future projections of drought. Part Ⅱ: Model-simulated historical and future drought changes. Climatic Change, 2017, 144(3): 535-548. doi: 10.1007/s10584-016-1742-x
|
[7] |
Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. J Appl Meteor Sci, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510
|
[8] |
Ding Y B, Gong X L, Xing Z X, et al. Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China. Agric Water Manag, 2021, 255(1): 106996.
|
[9] |
Vicente-Serrano S M, Beguería S, López-Moreno J I. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J Climate, 2010, 23(7): 1696-1718. doi: 10.1175/2009JCLI2909.1
|
[10] |
Hao Z, Singh V P. Drought characterization from a multivariate perspective: A review. J Hydrol, 2015, 527: 668-678. doi: 10.1016/j.jhydrol.2015.05.031
|
[11] |
Li X, He B, Quan X, et al. Use of the standardized precipitation evapotranspiration index(SPEI) to characterize the drying trend in Southwest China from 1982-2012. Remote Sens, 2015, 7(8): 10917-10937. doi: 10.3390/rs70810917
|
[12] |
Tian Y, Xu Y P, Wang G Q. Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River Basin. Sci Total Environ, 2018, 622/623: 710-720. doi: 10.1016/j.scitotenv.2017.12.025
|
[13] |
Wang H, Rogers J C, Munroe D K. Commonly used drought indices as indicators of soil moisture in China. J Hydrol, 2015, 16(3): 1397-1408.
|
[14] |
Agana N A, Homaifar A. A Deep Learning Based Approach for Long-term Drought Prediction//Proc Southeast Con 2017, 2017: 1-8.
|
[15] |
Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101
|
[16] |
Hao Z, Singh V P, Xia Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev Geophys, 2018, 56(1): 108-141. doi: 10.1002/2016RG000549
|
[17] |
Wang D, Borthwick A G, He H, et al. A hybrid wavelet de-noising and rank-set pair analysis approach for forecasting hydro-meteorological time series. Environ Res, 2018, 160(1): 269-281.
|
[18] |
Xu L, Chen N C, Zhang X. A comparison of large-scale climate signals and the North American Multi-Model Ensemble(NMME) for drought prediction in China. J Hydrol, 2018, 557: 378-390. doi: 10.1016/j.jhydrol.2017.12.044
|
[19] |
Deo R C, Şahin M. Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmos Res, 2015, 161/162(1): 65-81. doi: 10.1016/j.atmosres.2015.03.018
|
[20] |
Abbot J, Marohasy J. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos Res, 2014, 138(1): 166-178.
|
[21] |
Moreira E E, Coelho C A, Paulo A A, et al. SPI-based drought category prediction using loglinear models. J Hydrol, 2018, 354(1): 116-130.
|
[22] |
Han P, Wang P X, Zhang S Y, et al. Drought forecasting based on the remote sensing data using ARIMA models. Math Comput Modell, 2010, 51(11): 1398-1403.
|
[23] |
Xu L, Chen N, Zhang X, et al. An evaluation of statistical, NMME and hybrid models for drought prediction in China. J Hydrol, 2018, 566(1): 235-249.
|
[24] |
Dikshit A, Pradhan D, Huete A. An improved SPEI drought forecasting approach using the long short-term memory neural network. J Environ Manage, 2021, 283: 111979. doi: 10.1016/j.jenvman.2021.111979
|
[25] |
Mishra A K, Desai V R. Drought forecasting using feed-forward recursive neural network. Ecol Modell, 2006, 198(1/2): 127-138.
|
[26] |
Ochoa-Rivera J C. Prospecting droughts with stochastic artificial neural networks. J Hydrol, 2008, 352(1/2): 174-180.
|
[27] |
Min J J, Sun J R, Liu H Z, et al. An improved BP algorithm and its application to precipitation forecast. J Appl Meteor Sci, 2010, 21(1): 55-62. doi: 10.3969/j.issn.1001-7313.2010.01.007
|
[28] |
Mekanik F, Imteaz M A, Gato-Trinidad S, et al. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. J Hydrol, 2013, 503(30): 11-21.
|
[29] |
Hossain M, Rekabdar B, Louis S J, et al. Forecasting the Weather of Nevada: A Deep Learning Approach//Proc 2015 Int Joint Conf on Neural Netw, 2015: 1-6.
|
[30] |
Han X, Wei Z, Zhang B, et al. Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. J Hydrol, 2021, 596: 126104. doi: 10.1016/j.jhydrol.2021.126104
|
[31] |
de Oliveira e Lucas P, Alves M A, de Lima e Silva P C, et al. Reference evapotranspiration time series forecasting with ensemble of convolutional neural networks. Comput Electron Agric, 2020, 177: 105700. doi: 10.1016/j.compag.2020.105700
|
[32] |
Lecun Y, Bengio Y, Hinton G E. Deep learning. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[33] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science. Nature, 2019, 566(7743): 195-204. doi: 10.1038/s41586-019-0912-1
|
[34] |
Li Y, Chen H L. Review of machine learning approaches for modern agrometeorology. J Appl Meteor Sci, 2021, 31(3): 257-266. doi: 10.11898/1001-7313.20200301
|
[35] |
Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[36] |
Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106
|
[37] |
Le J A, El-Askary H M, Allali M, et al. Application of recurrent neural networks for drought projections in California. Atmos Res, 2017, 188(15): 100-106.
|
[38] |
Poornima S, Pushpalatha M. Drought prediction based on SPI and SPEI with varying timescales using LSTM recurrent neural network. Soft Comput, 2019, 23(6): 8399-8412.
|
[39] |
Shen R, Huang A, Li B, et al. Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int J Appl Earth Obs Geoinf, 2019, 79(1): 48-57.
|
[40] |
Cai J Q, Tan G R, Niu R Y. Circulation pattern classification of persistent heavy rainfall in Jianghuai Region based on the transfer learning CNN model. J Appl Meteor Sci, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208
|
[41] |
Ham Y, Kim J, Luo J. Deep learning for multi-year ENSO forecasts. Nature, 2019, 573(7775): 568-572. doi: 10.1038/s41586-019-1559-7
|
[42] |
Wang Z, Li J, Lai C, et al. Does drought in China show a significant decreasing trend from 1961 to 2009?. Sci Total Environ, 2017, 579(1): 314-324.
|
[43] |
Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. doi: 10.11898/1001-7313.20190309
|
[44] |
Yan H M, Wang L, Li R. Thermal characteristics over Eurasia in January-March and its relationship with precipitation of China. J Appl Meteor Sci, 2016, 27(2): 209-219. doi: 10.11898/1001-7313.20160209
|
[45] |
Beguería S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index(SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol, 2014, 34(10): 3001-3023. doi: 10.1002/joc.3887
|
[46] |
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition//Proc 3rd Int Conf on Learn Represent, 2015: 1-14.
|
[47] |
Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Neural Networks//Proc 13th Europ Conf on Comp Visi, 2014: 818-833.
|
[48] |
Zhou B, Khosla A, Lapedriza A, et al. Learning Deep Features for Discriminative Localization//Proc 2016 IEEE Conf on Comp Visi and Pattern Recognit, 2016: 2921-2929.
|
[49] |
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition//Proc 2016 IEEE Conf on Comp Visi and Pattern Recognit, 2016: 770-778.
|
[50] |
Yu Z, Chen G, Dong Y, et al. Highway Long Short-term Memory RNNS for Distant Speech Recognition//Proc 2016 IEEE Int Conf on Acoustics, Speech and Signal Process, 2016: 5755-5759.
|
[51] |
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need//Proc 31st Int Conf on Neural Inf Process Syst, 2017: 6000-6010.
|