[1]
|
Taylor P A, Teunissen H W. The Askervein Hill Project: Overview and background data. Bound-Layer Meteor, 1987, 39(1): 15-39.
|
[2]
|
Bechmann A, Sørensen N N, Berg J J, et al. The Bolund Experiment, Part Ⅱ: Blind comparison of microscale flow models. Bound-Layer Meteor, 2011, 141(2): 245-271. doi: 10.1007/s10546-011-9637-x
|
[3]
|
Fernando H, Mann J, Palma J, et al. The perdigo: Peering into microscale details of mountain winds. Bull Amer Meteor Soc, 2018, 100(5): 799-819.
|
[4]
|
Li F, Ruan Z, Wang H Y, et al. A calibration method of wind profile radar echo intensity with Doppler velocity spectrum. J Appl Meteor Sci, 2021, 32(3): 315-331. doi: 10.11898/1001-7313.20210305
|
[5]
|
Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi: 10.11898/1001-7313.20210306
|
[6]
|
Stefano S, Bianca A, Joan C, et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 2018, 9(3): 102-134. doi: 10.3390/atmos9030102
|
[7]
|
Jiménez P A, Kosović B. Implementation and Evaluation of a Three Dimensional PBL Parameterization for Simulations of the Flow over Complex Terrain. 17th Annual WRF Users' Workshop, 2016.
|
[8]
|
Zhu R, Xu D H. Multi-scale turbulent planetary boundary layer parameterization in mesoscale numerical simulation. J Appl Meteor Sci, 2004, 15(5): 543-555. doi: 10.3969/j.issn.1001-7313.2004.05.004
|
[9]
|
Cuxart J. When can a high-resolution simulation over complex terrain be called LES?. Earth Sci, 2015, 3(87): 1-6.
|
[10]
|
Xu Y, Chen Z H, Yang H Q, et al. Comparison of short-term forecast method of wind power in wind farm. J Appl Meteor Sci, 2013, 24(5): 625-630. doi: 10.3969/j.issn.1001-7313.2013.05.012
|
[11]
|
Xu J J, Hu F, Xiao Z N, et al. Analog bias correction of numerical model on wind power prediction. J Appl Meteor Sci, 2013, 24(6): 731-740. doi: 10.3969/j.issn.1001-7313.2013.06.010
|
[12]
|
Lilly D K. On the Application of the Eddy Viscosity Concept in the Inertial Sub-range of Turbulence//NCAR Manuscript No. 123. National Center for Atmospheric Research, 1966.
|
[13]
|
|
[14]
|
|
[15]
|
Chow K F, Street R L, Xue M, et al. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci, 2005, 62(7): 2058-2077. doi: 10.1175/JAS3456.1
|
[16]
|
Mirocha J D, Lundquist J K, Kosović B. Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon Wea Rev, 2010, 138(11): 4212-4228. doi: 10.1175/2010MWR3286.1
|
[17]
|
|
[18]
|
Liu Y, Warner T, Liu Y, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J Wind Eng Ind Aerod, 2011, 99(4): 308-319. doi: 10.1016/j.jweia.2011.01.013
|
[19]
|
|
[20]
|
Rai R K, Berg L K, Kosović B, et al. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain. Bound-Layer Meteor, 2016, 163(1): 1-21.
|
[21]
|
|
[22]
|
Xue L, Chu X, Rasmussen R, et al. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part Ⅱ: AgI dispersion and seeding signals simulated by WRF. J Appl Meteor Climatol, 2014, 53(10): 2264-2286. doi: 10.1175/JAMC-D-14-0017.1
|
[23]
|
Gerber F, Besic N, Sharma V, et al. Spatial variability in snow precipitation and accumulation in COSMO-WRF simulations and radar estimations over complex terrain. The Cryosphere, 2018, 12(10): 3137-3160. doi: 10.5194/tc-12-3137-2018
|
[24]
|
Liu Y J, Liu Y B, Muoz-Esparza D, et al. Simulation of flow fields in complex terrain with WRF-LES: Sensitivity assessment of different PBL treatments. J Appl Meteor Climatol, 2020, 59: 1481-1501. doi: 10.1175/JAMC-D-19-0304.1
|
[25]
|
Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103
|
[26]
|
Mailhot J, Bélair S, Charron M, et al. Environment Canada's experimental numerical weather prediction systems for the Vancouver 2010 Winter Olympic and Paralympic Games. Bull Amer Meteor Soc, 2010, 91(8): 69-82.
|
[27]
|
Chen M X, Quan J N, Miao S G, et al. Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games. WMO Bull, 2018, 62(2): 58-61.
|
[28]
|
Whiteman C D. Mountain Meteorology: Fundamentals and Applications. New York: Oxford University Press, 2000.
|
[29]
|
|
[30]
|
Wei F Y. Progresses on climatological statistical diagnosis and prediction methods—In commemoration of the 50 anniversaries of CAMS establishment. J Appl Meteor Sci, 2006, 17(6): 736-742. doi: 10.3969/j.issn.1001-7313.2006.06.011
|
[31]
|
Jenkinson A F, Collison F P. An Initial Climatology of Gales over the North Sea//Synoptic Climatology Branch Memorandum. Bracknell. Meteorological Office, 1977: 18.
|
[32]
|
Hao L S, Li W J. Relationships of regional circulation patterns in North China and Hebei Province climate changes. Transactions of Atmospheric Sciences, 2009, 32(5): 618-626. doi: 10.3969/j.issn.1674-7097.2009.05.004
|
[33]
|
|
[34]
|
|
[35]
|
Liu Y J, Miao S G, Liu L, et al. Effects of a modified sub-grid-scale terrain parameterization scheme on the simulation of low-layer wind over complex terrain. J Appl Meteor Sci, 2019, 30(1): 70-81. doi: 10.11898/1001-7313.20190107
|
[36]
|
|