Liu Chunwen, Guo Xueliang, Duan Wei, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. DOI:  10.11898/1001-7313.20220202.
Citation: Liu Chunwen, Guo Xueliang, Duan Wei, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. DOI:  10.11898/1001-7313.20220202.

Observation and Analysis of Microphysical Characteristics of Stratiform Clouds with Embedded Convections in Yunnan

DOI: 10.11898/1001-7313.20220202
  • Received Date: 2021-10-19
  • Rev Recd Date: 2021-12-21
  • Publish Date: 2022-03-31
  • observation is an important mean to obtain cloud physical information, which is important for weather modification research and operation. In China, aircraft observation research on cloud microphysical characteristics is mainly carried out in the northern region, seldom in the southwestern region. Yunnan is a low-latitude plateau with complex topography and distinct weather and climate. The aircraft cloud physical detection equipment in Yunnan is put into use since 2017, and it carried domestic laser cloud particle probes, including cloud particle spectrometer probe, cloud particle imager probe, and precipitation particle imager probe.The aircraft can obtain the size and number of cloud particles and precipitation particles at different resolutions of 2-6200 μm, as well as 25-6200 μm particle images.The mixed cloud observations of cumulonimbus and stratiform clouds from Yun-12 and King Air-E350 aircraft in Yunnan during 2017-2020 are analyzed. Data of 76 flights are obtained, with the maximum flight altitude of 6946 m (ambient temperature -14℃). The cloud vertical structure is observed by descending and ascending flights. The results show that the number concentration of cloud particles is much higher than that in northern China. The average number concentration of cloud particles (2-50 μm) is 339.7 cm-3 with a maximum value of 1067.6 cm-3; the average water content is 0.181 g·m-3, and the maximum is 2.827 g·m-3; the average effective diameter of cloud particles is 11.2 μm and the maximum is 34.6 μm. The cloud particles have a negative exponential size distribution with double peaks. The first peak is located at 4 μm and the second peak is at 10 μm. The cloud particle number concentration, water content and extinction coefficient show obvious layered distribution characteristics with height, but the effective particle diameter doesn't change much.The reflectivity factor is maximum at the height of 3.4 km.In the warm cloud region, the average water content of rain drops with diameter from 200 to 1500 μm is 0.183 g·m-3 with a maximum value of 4.247 g·m-3. The average water content of rain particles in the range of 200-6000 μm is 0.406 g·m-3 with the maximum of 8.917 g·m-3.In Yunnan, the spectral width of cloud particles becomes wider with the increase of cloud water content.With the outbreak and establishment of the Southwest Summer Monsoon, the small cloud particles increase, and the large cloud particles decrease in the warm area of cloud. It is helpful to improve the efficiency of artificial precipitation enhancement by carrying out warm cloud artificial precipitation enhancement.
  • Fig. 1  Number of flights in Yunnan from 2017 to 2020

    Fig. 2  Size distributions of cloud particles detected by CIP and PIP from 2017 to 2020

    Fig. 3  Size distributions of averaged cloud particles detected by CDP under different water contents

    Fig. 4  Vertical distributions of number concentration, water content and average effective diameter of the cloud particle detected by CDP from 2017 to 2020

    Fig. 5  Vertical distributions of mean radar reflectivity factor and extinction coefficient of the cloud particle detected by CDP from 2017 to 2020

    Fig. 6  Percentage diagram of effective particle diameter distribution for cloud particle water content between 0.05 g·m-3 and 0.5 g·m-3 during Apr-Jul from 2017 to 2020

    Fig. 7  Size distributions of cloud particles detected by CIP and PIP during Apr-Jun from 2017 to 2020

    Table  1  Statistical characteristics of cloud from 2017 to 2020

    云类 统计量 平均值 标准差 最小值 最大值
    所有云 含水量/(g·m-3) 0.181 0.238 0.001 2.827
    数浓度/cm-3 339.7 221.0 4.7 1067.6
    有效直径/μm 11.2 4.6 4.2 34.6
    云中观测高度/m 4413 1034 1246 6946
    零度层高度/m 4695 546 3693 5791
    暖区云 含水量/(g·m-3) 0.200 0.248 0.001 2.827
    数浓度/cm-3 354.1 225.4 4.7 1067.6
    有效直径(μm) 11.8 4.7 4.2 34.6
    云中观测高度(m) 4225 961 1246 5793
    冷区云 含水量/(g·m-3) 0.069 0.113 0.001 1.860
    数浓度/cm-3 253.6 168.7 7.7 706.1
    有效直径/μm 8.0 2.3 4.2 24.1
    云中观测高度/m 5541 670 3693 6946
    DownLoad: Download CSV

    Table  2  Microphysical properties in cold clouds detected by CDP for 12 flights

    日期 样本点数 数浓度/cm-3 含水量/(g·m-3) 有效直径/μm
    平均值 最大值 平均值 最大值 平均值 最大值
    2018-03-17 998 433 704 0.132 0.475 8.8 22.3
    2018-03-23 112 385 669 0.216 0.670 10.3 13.4
    2018-04-19 72 206 389 0.017 0.051 5.5 6.8
    2019-03-20 473 418 647 0.062 0.189 7.1 9.8
    2019-04-21 25 417 624 0.059 0.164 6.4 8.9
    2019-06-01 827 242 427 0.030 0.093 6.6 9.2
    2020-04-22 144 192 330 0.014 0.045 5.4 7.8
    2020-04-24 1915 263 706 0.083 1.276 7.9 18.6
    2020-04-25 1274 182 531 0.030 0.274 7.2 17.5
    2020-04-26 290 104 408 0.015 0.038 7.4 9.0
    2020-05-22 372 340 593 0.193 1.860 11.4 23.5
    2020-05-27 2349 182 530 0.054 0.537 8.5 24.1
    DownLoad: Download CSV

    Table  3  Statistics of cloud precipitation particle and precipitation particle in warm cloud from 2017 to 2020

    粒子类型 统计量 平均值 标准差 最小值 最大值
    含水量/(g·m-3) 0.183 0.293 0.001 4.247
    数浓度/cm-3 0.012 0.023 0.001 0.343
    云降水粒子 有效直径/μm 470.3 272.6 100.0 1425.4
    云高/m 3967 859 1201 5496
    云温/℃ 4.5 3.9 0.0 22.4
    含水量/(g·m-3) 0.406 0.857 0.004 8.917
    数浓度/cm-3 0.002 0.001 0.001 0.008
    降水粒子 有效直径/μm 817.5 623.1 200.0 3960.9
    云高/m 3800 1010 1165 5258
    云温/℃ 4.8 4.9 0.0 24.3
    DownLoad: Download CSV

    Table  4  Statistics of cloud particles during Apr-Jul from 2017 to 2020

    物理量 统计量 4月 5月 6月 7月
    探测高度/m 最小值 1577 2164 1245 2188
    最大值 6946 6648 6324 5615
    平均值 355 356 325 325
    数浓度/cm-3 标准差 229 214 212 223
    最大值 884 1067 982 945
    平均值 0.129 0.167 0.182 0.193
    含水量/(g·m-3) 标准差 0.179 0.208 0.254 0.248
    最大值 1.812 2.118 2.574 2.827
    平均值 9.0 9.5 11.0 12.4
    有效直径/μm 标准差 3.1 3.0 4.1 4.3
    最大值 29.6 24.0 34.1 32.6
    DownLoad: Download CSV
  • [1]
    Huang M Y, Shen Z L, Hong Y C. Advance of research on cloud and precipitation and weather modification in the latest half century. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 536-551. doi:  10.3878/j.issn.1006-9895.2003.04.08
    [2]
    Guo X L, Fu D H, Hu Z X. Progress in cloud physics, precipitation, and weather modification during 2008-2012. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 351-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201302013.htm
    [3]
    Lei H C, Hong Y C, Zhao Z, et al. Advances in cloud and precipitat ion physics and weather modification in recent years. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 967-974. doi:  10.3878/j.issn.1006-9895.2008.04.21
    [4]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. Journal of Applied Meteorological Science, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [5]
    Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. Journal of Applied Meteorological Science, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207
    [6]
    Twomey S. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, 1977, 34(7): 1149-1152. doi:  10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    [7]
    Slingo A. Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 1990, 343(6253): 49-51. doi:  10.1038/343049a0
    [8]
    Randall D A, Coakley J A, Fairall C W, et al. Outlook for research on subtropical marine stratiform clouds. Bulletin of the American Meteorological Society, 1984, 65(12): 1290-1301. doi:  10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2
    [9]
    Nicholls S. The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quarterly Journal of the Royal Meteorological Society, 1984, 110(466): 783-820. doi:  10.1002/qj.49711046603
    [10]
    Miles N L, Verlinde J, Clothiaux E E. Cloud droplet size distributions in low-level stratiform clouds. Journal of the Atmospheric Sciences, 2000, 57(2): 295-311. doi:  10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
    [11]
    Liao J, Xiong A Y. Introduction and quality analysis of Chinese aircraft meteorological data. Journal of Applied Meteorological Science, 2010, 21(2): 206-213. doi:  10.3969/j.issn.1001-7313.2010.02.010
    [12]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. Journal of Applied Meteorological Science, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [13]
    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. Journal of Applied Meteorological Science, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [14]
    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. Journal of Applied Meteorological Science, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [15]
    Zhang D G, Guo X L, Gong D L, et al. The observational results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteorologica Sinica, 2011, 69(1): 95-207. doi:  10.3969/j.issn.1004-4965.2011.01.011
    [16]
    Li L G, De L. Analyses of microphysical features for spring precipitation cloud layers in east of Qinghai. Plateau Meteorology, 2001, 20(2): 191-196. doi:  10.3321/j.issn:1000-0534.2001.02.013
    [17]
    Su Z J, Liu W G, Wang G H, et al. Microphysical characteristics of a precipitaion process in Qinghai Province. Journal of Applied Meteorological Science, 2003, 14(Suppl I): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1003.htm
    [18]
    Yang W X, Niu S J, Wei J G, et al. Airborne observation for microphysical structure of precipitation system of stratiform cloud in Hebei Province. Plateau Meteorology, 2005, 24(1): 84-90. doi:  10.3321/j.issn:1000-0534.2005.01.013
    [19]
    Zhang D G, Guo X L, Fu D H, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August-September 2003. Chinese Journal of Atmospheric Sciences, 2007, 31(4): 596-610. doi:  10.3878/j.issn.1006-9895.2007.04.05
    [20]
    Fan Y, Guo X L, Zhang D G, et al. Airborne particle measuring system measurement on structure and size distribution of stratocumulus during August to September in 2004 over Beijing and its surrounding areas. Chinese Journal of Atmospheric Sciences, 2010, 34(6): 1187-1200. doi:  10.3878/j.issn.1006-9895.2010.06.12
    [21]
    Li Z R, Li R Q, Li B Z. Analyses on vertical microphysical characteristics of autumn stratiform cloud in Lanzhou region. Plateau Meteorology, 2003, 22(6): 583-589. doi:  10.3321/j.issn:1000-0534.2003.06.008
    [22]
    Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertival distributions and its activation efficiency over the pearl river delta. Journal of Applied Meteorological Science, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604
    [23]
    Hong Y C. The numerical simulation study of convective-stratiform mixed cloud, part (Ⅱ)-Interaction of clouds and formative mechanism of the heavy rain. Acta Meteorologica Sinica, 1996, 54(6): 661-674. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB606.002.htm
    [24]
    Li Z H, Xia X Q, Zhang Q. A prelminary study of the brigh band in the Meiyu frontal cloud system. Scientia Meteorologica Sinica, 1986(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198601009.htm
    [25]
    Zhu T, Wang X Q, Zhu R. The Difference of the heating vertical profile between cumulus precipitation and stratus-cumulus mixing precipitation. Journal of Applied Meteorological Science, 1995, 6(2): 171-176. http://qikan.camscma.cn/article/id/19950221
    [26]
    Oliver F, Christoph S. Embedded cellular convection in moist flow past topography. Journal of the Atmospheric Sciences, 2005, 62(8): 2810-2828. doi:  10.1175/JAS3512.1
    [27]
    Li Y W, Niu S J. The formation and precipitation mechanism of two ordered patterns of embedded convection in stratiform cloud. Science China Earth Sciences, 2012, 55(1): 113-125. doi:  10.1007/s11430-011-4278-y
    [28]
    Zhang D G, Yao Z Y, Gong D L, et al. Microphysical structures of stratocumulums mixed cloud detected by aricraft around Beijing area. Transactions of Atmospheric Sciences, 2011, 34(1): 109-121. doi:  10.3969/j.issn.1674-7097.2011.01.014
    [29]
    Qi P, Guo X L, Lu G X, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in Eastern Taihang Mountain of North China: Characteristicsof embedded convection and melting layer structure. Chinese Journal of Atmospheric Sciences, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htm
    [30]
    Zhu S C, Guo X L. Ice crystal habits, distribution and growth process in stratifrom clouds with embedded convection in North China: Aircraft measurements. Acta Meteorologica Sinica, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm
    [31]
    Xu Y H. Southwest Climate. Beijing: China Meteorological Press, 1991.
    [32]
    Xu M L, Duan X, Qi M H, et al. Yunnan Weather Forecaster's Manual. Beijing: China Meteorological Press, 2011.
    [33]
    Qin J, Ju J H, Xie M E. Weather and Climate over Low Latitude Plateau. Beijing: China Meteorological Press, 1997.
    [34]
    Yan H M, Wang L, Zhou G L, et al. The relationship between rainfall in Yunnan summer and the circulation in preceding winter. Journal of Applied Meteorological Science, 2007, 18(3): 340-349. doi:  10.3969/j.issn.1001-7313.2007.03.010
    [35]
    Fan D, Xia S N, Shi X D. Research of cloud particle detection technology based on forward scattering. Laser Technology, 2018, 42(Suppl I): 112-116.
    [36]
    Guo X L, Yu Z P, Yang Z H, et al. Development and application of the high-performance airborne cloud particle imager. Acta Meteorologica Sinica, 2020, 78(6): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006013.htm
    [37]
    Zeng X, Wu B, Shi X D, et al. Study on airborne laser cloud particle imaging probe and its calibration. Laser Technology, 2015, 39(6): 798-801. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201506014.htm
    [38]
    Korolev A V, Strapp J W, Isaac G A. Evaluation of the accuracy of PMS optical array probes. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 708-720. doi:  10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2
    [39]
    Huang M S, Lei H C, Chen J T, et al. Cloud particle shattering during sampling by airborne optical array probes. Chinese Journal of Atmospheric Sciences, 2016, 40(3): 647-656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201603016.htm
    [40]
    Sun H P, Li P R, Yan S M, et al. Characteristics of cloud microphysical structure based on aircraft data in 2008-2010 in Shanxi Province. Meteorological Science and Technology, 2014, 42(4): 682-689. doi:  10.3969/j.issn.1671-6345.2014.04.027
    [41]
    Deng Z Z, Zhao C S, Zhang Q, et al. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmospheric Research, 2009, 93(4): 888-896. doi:  10.1016/j.atmosres.2009.04.011
    [42]
    Wang D H, Yin J F, Zhai G Q. In-situ measurement of cloud-precipitatoin microphysics in East Asian monsoon region since 1960. Acta Meteorologica Sinica, 2014, 72(4): 639-657. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201404001.htm
    [43]
    Lin H, Gu Z C. Preliminary explanation of the formation of the second maximum in the cloud drop spectrum. Chinese Science Bulletin, 1965(10): 923-925. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196510015.htm
    [44]
    Guo L J, Guo X L, Lou X F, et al. An observational study of diurnal and seasonal variations, and macroscopic and microphysical properties of clouds and precipitation over Mount Lu, Jiangxi, China. Acta Meteorologica Sinica, 2019, 77(5): 923-937. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905010.htm
    [45]
    Zhou Y, Niu S J, Lü J J, et al. The effect of freezing drizzle, sleet and snow on microphysical characteristics of supercooled fog during the icing process in a mountainous area. Atmosphere, 2016, 7(11): 143. doi:  10.3390/atmos7110143
    [46]
    Rosenfeld D. Cloud-aerosol-precipitation Interactions Based of Satellite Retrieved Vertical Profiles of Cloud Microstructure//Remote Sensing of Aerosols, Clouds, and Precipitation. Elsevier, 2018: 129-152. http://www.sciencedirect.com/science/article/pii/b9780128104378000062
    [47]
    Korolev A, Shashkov A, Barker H. Calibrations and performance of the airborne cloud extinction probe. Journal of Atmospheric Oceanic Technology, 2014, 31(2): 326-345. doi:  10.1175/JTECH-D-13-00020.1
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (1539) PDF downloads(170) Cited by()
    • Received : 2021-10-19
    • Accepted : 2021-12-21
    • Published : 2022-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint