Huang Xiaoyuan, Li Xiehui. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. DOI:  10.11898/1001-7313.20220209.
Citation: Huang Xiaoyuan, Li Xiehui. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. DOI:  10.11898/1001-7313.20220209.

Future Projection of Rainstorm and Flood Disaster Risk in Southwest China Based on CMIP6 Models

DOI: 10.11898/1001-7313.20220209
  • Received Date: 2021-09-27
  • Rev Recd Date: 2022-01-21
  • Publish Date: 2022-03-31
  • Under the background of global warming and frequent extreme weather and climate events, the occurrence of rainstorm and flood disasters in Southwest China continues to increase, causing great losses to social economy and people's lives and property. In order to project the characteristics of future rainstorm and flood disaster risk in Southwest China, 5 CMIP6 models and 5 extreme precipitation indices are selected to construct a risk assessment model, combined with topographic factors, socio-economic data and percentage of cultivated land area, by comprehensively considering disastrous factors and vulnerability. The rainstorm and flood disaster risks are mainly assessed for the baseline period (1995-2014), projected under three scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two future periods (2021-2040, 2041-2060), and comparatively analyzed. The results show that the simulation performance of EC-Earth3 and EC-Earth3-Veg on the selected 5 extreme precipitation indices is excellent, and the performance of un-equal weighted aggregation (UEWA-5) is better than equal weighted aggregation (EWA-5). According to the prediction results, 5 extreme precipitation indices are high in western Yunnan, northeastern Guangxi, and the western margin of Sichuan Basin. Higher social vulnerability and radiation forcing lead to greater extreme precipitation index. From the baseline period to the next two periods, the extreme precipitation indices and risk of disastrous factors show an increasing trend. The high vulnerability areas are distributed in the economically and agriculturally developed regional central cities and the change of vulnerability is not obvious under different scenarios. The medium-high risk areas and high risk areas of rainstorm and flood disasters are mainly distributed in Chengdu City of Sichuan, the center of Chongqing and western Sichuan Basin, Kunming City of Yunnan, Guilin City and south-central parts of Guangxi. The medium-high risk areas and high risk areas in Southwest China increase with time from the base period to the far future, especially under the SSP2-4.5 scenario.
  • Fig. 1  Location and topography of the target area

    Fig. 2  Taylor diagrams of extreme precipitation indices for 5 CMIP6 models(a) and model ensembles(b) in Southwest China during 1995-2014

    Fig. 3  Standardized series of 5 extreme precipitation indices in Southwest China during 1995-2014

    Fig. 4  Time series of 5 extreme precipitation indices in Southwest China under 3 scenarios during 2 future periods

    Fig. 5  Spatial distribution of R50 in Southwest China under 3 scenarios during the base period and 2 future periods

    Fig. 6  Spatial distribution of disaster risk caused by rainstorm and flood in Southwest China under 3 scenarios during 2 future periods

    Fig. 7  Spatial distribution of vulnerability of disaster-bearing body in Southwest China under 3 scenarios during 2 future periods

    Fig. 8  Spatial distribution of integrated risk of rainstorm and flood disaster in Southwest China under 3 scenarios during the base period and 2 future periods

    Table  1  Information of 5 models in CMIP6

    模式名称 国家和地区 机构 格点数
    BCC-CSM2-MR 中国 BCC 160×320
    EC-Earth3 欧洲 EC 256×512
    EC-Earth3-Veg 欧洲 EC 256×512
    GFDL-ESM4 美国 NOAA-GFDL 180×288
    MPI-ESM1-2-HR 德国 MPI-M 192×384
    DownLoad: Download CSV

    Table  2  Definitions of 5 extreme precipitation indices

    指数 英文缩写 定义 单位
    大雨日数 R20 日降水量不小于20 mm的日数 d
    暴雨日数 R50 日降水量不小于50 mm的日数 d
    5 d最大降水量 RX5day 最大连续5 d降水量 mm
    年降水量 PRCPTOT 年降水量 mm
    降水强度 SDII 湿日总降水量/湿日日数 mm·d-1
    DownLoad: Download CSV

    Table  3  Ranking of S-value for 5 models in CMIP6

    模式 5个极端降水指数S值排名 综合排名
    R20 R50 RX5day PRCPTOT SDII
    BCC-CSM2-MR 3 3 4 3 4 3
    EC-Earth3 2 2 2 2 2 2
    EC-Earth3-Veg 1 1 1 1 1 1
    GFDL-ESM4 4 4 5 5 3 4
    MPI-ESM1-2-HR 5 5 3 4 5 5
    DownLoad: Download CSV

    Table  4  Area proportion of comprehensive risk zone of rainstorm and flood disaster in Southwest China (unit: %)

    情景 时期 暴雨洪涝灾害风险等级
    基准期 25.85 53.68 13.59 5.85 1.02
    SSP1-2.6 近期 22.70 54.26 14.97 6.99 1.08
    远期 22.50 54.28 14.46 7.46 1.29
    SSP2-4.5 近期 21.61 55.12 14.02 8.02 1.24
    远期 21.46 53.16 14.58 8.92 1.88
    SSP5-8.5 近期 22.04 54.60 14.38 7.81 1.17
    远期 21.36 53.42 14.75 8.73 1.73
    DownLoad: Download CSV
  • [1]
    Huang R H, Chen D, Liu Y. Characteristics and causes of the occurrence of flooding disaster and persistent heavy rainfall in the Yangtze River Valley of China. Journal of Chengdu University of Information Technology, 2012, 27(1): 1-19. doi:  10.3969/j.issn.1671-1742.2012.01.001
    [2]
    Xue Q F, Ren C S, Tao S Y. An analysis of causes for floods in Changjiang River Valley in 1998. J Appl Meteor Sci, 2001, 12(2): 246-250. doi:  10.3969/j.issn.1001-7313.2001.02.015
    [3]
    Ma X. Summary of national flood disasters in 2017. China Flood & Drought Management, 2018, 28(8): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201808024.htm
    [4]
    Yang F, Li X H. Spatial and temporal change characteristics and trend analysis of main agrometeorological disaster in Southwestern China. Climate Change Research Letters, 2020, 9(6): 738-751.
    [5]
    Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi:  10.11898/1001-7313.20160612
    [6]
    Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi:  10.11898/1001-7313.20170601
    [7]
    Ma Q R, Zuo X, Hu C D, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. doi:  10.11898/1001-7313.20210409
    [8]
    Alfieri L, Feyen L, Dottori F, et al. Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 2015, 35: 199-212. doi:  10.1016/j.gloenvcha.2015.09.004
    [9]
    Roy S, Bose A, Chowdhury I R. Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill, India. Arab J Geosci, 2021, 14(11). DOI:  10.1007/s12517-021-07324-8.
    [10]
    Bian J, Li S L, He J H. Risk Assessment of flood disaster in the mid-lower reaches of the Yangtze. J Appl Meteor Sci, 2011, 22(5): 604-611. doi:  10.3969/j.issn.1001-7313.2011.05.011
    [11]
    Xu Y, Zhang B, Zhou B T, et al. Projected risk of flooding disaster in China based on CMIP5 models. Climate Change Research, 2014, 10(4): 268-275. doi:  10.3969/j.issn.1673-1719.2014.04.007
    [12]
    Li R K, Li Y H, Xu Y. Projection of rainstorm and flooding disaster risk in China in the 21st Century. Journal of Arid Meteorology, 2018, 36(3): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803001.htm
    [13]
    Lu J Y, Yan J P, Cao Y W. Spatial distribution characteristics of precipitation and flood index in Southwestern China during 1961-2015. Resources and Environment in the Yangtze Basin, 2017, 26(10): 1711-1720. doi:  10.11870/cjlyzyyhj201710023
    [14]
    Yan Z T, Li X H, Liu Z T, et al. Risk change of rainstorm and flood disaster in four provinces and cities of Southwestern China under the background of climate warming. Journal of Catastrophology, 2021, 36(2): 200-207. doi:  10.3969/j.issn.1000-811X.2021.02.035
    [15]
    Ding W R. Spatial and temporal variability of the extreme daily precipitation in Southwestern China. Resources and Environment in the Yangtze Basin, 2014, 23(7): 1029-1037. doi:  10.11870/cjlyzyyhj201407019
    [16]
    Zhang W L, Zhang J Y, Fan G Z. Evaluation and projection of dry and wet season precipitation in Southwestern China using CMIP5 models. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 559-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503010.htm
    [17]
    Hu Z H, Li Y H, Hu Y W, et al. Prediction of future precipitation in Southwestern China by CMIP5 and RegCM4.0 models. Mid-Low Latitude Mountain Meteorology, 2020, 44(5): 19-25. doi:  10.3969/j.issn.1003-6598.2020.05.003
    [18]
    Wu J, Zhou B T, Xu Y. Response of precipitation and its extremes over China to warming CMIP5 simulation and projection. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201509003.htm
    [19]
    Cheng F, Li Q P, Shen X Y, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. doi:  10.11898/1001-7313.20210504
    [20]
    Zhao Z C, Luo Y, Huang J B. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models. Climate Change Research, 2018, 14(6): 643-648. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806012.htm
    [21]
    Xiang J W, Zhang L P, Deng Y, et al. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 2021, 54(1): 46-57;81. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202101008.htm
    [22]
    Zhao L N, Liu Y, Dang H F, et al. The Progress on application of ensemble prediction to flood forecasting. J Appl Meteor Sci, 2014, 25(6): 641-653. http://qikan.camscma.cn/article/id/20140601
    [23]
    Wei Y H, Ma L P, Wang B C. Evaluation and measurement of the economic development differences among the eight comprehensive economic zones in China. The Journal of Quantitative & Technical Economics, 2020, 37(6): 89-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY202006005.htm
    [24]
    Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. doi:  10.11898/1001-7313.20190309
    [25]
    Wang Y, Li H X, Wang H J, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorologica Sinica, 2021, 79(3): 369-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202103001.htm
    [26]
    Yue Y L, Yan D, Yue Q, et al. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos Res, 2021, 264: 105828. doi:  10.1016/j.atmosres.2021.105828
    [27]
    Yang G Y, Pei Y F, Song M H, Evaluation and projection of precipitation in Southwestern China using CMIP6 models. Open Journal of Natural Science, 2021, 9(6): 910-920.
    [28]
    Zhao Y F, Zhu J. Assessing quality of grid daily precipitation datasets in China in recent 50 years. Plateau Meteorology, 2015, 34(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501006.htm
    [29]
    Zhang J, Cao L G, Li X C, et al. Advances in shared socio-economic pathways in IPCC AR5. Climate Change Research, 2013, 9(3): 225-228. doi:  10.3969/j.issn.1673-1719.2013.03.012
    [30]
    Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev, 2019, 12(4): 1443-1475. doi:  10.5194/gmd-12-1443-2019
    [31]
    Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability, 2016, 11(7). DOI:  10.3390/su11072106.
    [32]
    Chen X C. Assessment of Precipitation over China Simulated by CMIP5 Multi-models. Beijing: Chinese Academy of Meteorological Sciences, 2014.
    [33]
    Lin W Q, Chen H P. Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: From CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13(6): 598-603. doi:  10.1080/16742834.2020.1820303
    [34]
    Liu K, Xu Y L, Tao S C, et al. Validation of multi-model ensemble to air temperature of China and projection of air temperature change in China for the next three decades. Plateau Meteorology, 2011, 30(2): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102012.htm
    [35]
    Huang P, Ying J. A Multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J Climate, 2015, 28(12): 4706-4723. doi:  10.1175/JCLI-D-14-00833.1
    [36]
    Lan M C, Hu X L, Liu H W, et al. Seasonal difference analysis of spatial and temporal distribution characteristics of extreme precipitation indexes in Hunan Province in recent 55 years. Acta Agriculturae Jiangxi, 2017, 29(11): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201711023.htm
    [37]
    Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer rainfall in China. J Appl Meteor Sci, 2020, 31(5): 570-582. doi:  10.11898/1001-7313.20200505
    [38]
    Taylor K E. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos, 2001, 106(D7): 7183-7192. doi:  10.1029/2000JD900719
    [39]
    Wu S H, Dai E F, Ge Q S, et al. Comprehensive Risk Prevention: China's Comprehensive Climate Change Risks. Beijing: Science Press, 2011: 111-125.
    [40]
    Shao J L, Zheng W. Study on the flood hazard assessment method. Journal of Catastrophology, 2018, 33(2): 58-63. doi:  10.3969/j.issn.1000-811X.2018.02.012
    [41]
    Feng Q, Tao S Y, Wang A S, et al. Analysis of the influence of heavy-rain and flood disaster on social economy and human life. Journal of Catastrophology, 2001, 16(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200103008.htm
    [42]
    Jiang Z H, Chen W L, Song J, et al. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models. Chinese J Atmos Sci, 2009, 33(1): 109-120. doi:  10.3878/j.issn.1006-9895.2009.01.10
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(4)

    Article views (1706) PDF downloads(221) Cited by()
    • Received : 2021-09-27
    • Accepted : 2022-01-21
    • Published : 2022-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint