模式名称 | 国家和地区 | 机构 | 格点数 |
BCC-CSM2-MR | 中国 | BCC | 160×320 |
EC-Earth3 | 欧洲 | EC | 256×512 |
EC-Earth3-Veg | 欧洲 | EC | 256×512 |
GFDL-ESM4 | 美国 | NOAA-GFDL | 180×288 |
MPI-ESM1-2-HR | 德国 | MPI-M | 192×384 |
Citation: | Huang Xiaoyuan, Li Xiehui. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. DOI: 10.11898/1001-7313.20220209. |
Table 1 Information of 5 models in CMIP6
模式名称 | 国家和地区 | 机构 | 格点数 |
BCC-CSM2-MR | 中国 | BCC | 160×320 |
EC-Earth3 | 欧洲 | EC | 256×512 |
EC-Earth3-Veg | 欧洲 | EC | 256×512 |
GFDL-ESM4 | 美国 | NOAA-GFDL | 180×288 |
MPI-ESM1-2-HR | 德国 | MPI-M | 192×384 |
Table 2 Definitions of 5 extreme precipitation indices
指数 | 英文缩写 | 定义 | 单位 |
大雨日数 | R20 | 日降水量不小于20 mm的日数 | d |
暴雨日数 | R50 | 日降水量不小于50 mm的日数 | d |
5 d最大降水量 | RX5day | 最大连续5 d降水量 | mm |
年降水量 | PRCPTOT | 年降水量 | mm |
降水强度 | SDII | 湿日总降水量/湿日日数 | mm·d-1 |
Table 3 Ranking of S-value for 5 models in CMIP6
模式 | 5个极端降水指数S值排名 | 综合排名 | ||||
R20 | R50 | RX5day | PRCPTOT | SDII | ||
BCC-CSM2-MR | 3 | 3 | 4 | 3 | 4 | 3 |
EC-Earth3 | 2 | 2 | 2 | 2 | 2 | 2 |
EC-Earth3-Veg | 1 | 1 | 1 | 1 | 1 | 1 |
GFDL-ESM4 | 4 | 4 | 5 | 5 | 3 | 4 |
MPI-ESM1-2-HR | 5 | 5 | 3 | 4 | 5 | 5 |
Table 4 Area proportion of comprehensive risk zone of rainstorm and flood disaster in Southwest China (unit: %)
情景 | 时期 | 暴雨洪涝灾害风险等级 | ||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | ||
基准期 | 25.85 | 53.68 | 13.59 | 5.85 | 1.02 | |
SSP1-2.6 | 近期 | 22.70 | 54.26 | 14.97 | 6.99 | 1.08 |
远期 | 22.50 | 54.28 | 14.46 | 7.46 | 1.29 | |
SSP2-4.5 | 近期 | 21.61 | 55.12 | 14.02 | 8.02 | 1.24 |
远期 | 21.46 | 53.16 | 14.58 | 8.92 | 1.88 | |
SSP5-8.5 | 近期 | 22.04 | 54.60 | 14.38 | 7.81 | 1.17 |
远期 | 21.36 | 53.42 | 14.75 | 8.73 | 1.73 |
[1] |
Huang R H, Chen D, Liu Y. Characteristics and causes of the occurrence of flooding disaster and persistent heavy rainfall in the Yangtze River Valley of China. Journal of Chengdu University of Information Technology, 2012, 27(1): 1-19. doi: 10.3969/j.issn.1671-1742.2012.01.001
|
[2] |
Xue Q F, Ren C S, Tao S Y. An analysis of causes for floods in Changjiang River Valley in 1998. J Appl Meteor Sci, 2001, 12(2): 246-250. doi: 10.3969/j.issn.1001-7313.2001.02.015
|
[3] |
Ma X. Summary of national flood disasters in 2017. China Flood & Drought Management, 2018, 28(8): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201808024.htm
|
[4] |
Yang F, Li X H. Spatial and temporal change characteristics and trend analysis of main agrometeorological disaster in Southwestern China. Climate Change Research Letters, 2020, 9(6): 738-751.
|
[5] |
Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi: 10.11898/1001-7313.20160612
|
[6] |
Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi: 10.11898/1001-7313.20170601
|
[7] |
Ma Q R, Zuo X, Hu C D, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409
|
[8] |
Alfieri L, Feyen L, Dottori F, et al. Ensemble flood risk assessment in Europe under high end climate scenarios. Global Environmental Change, 2015, 35: 199-212. doi: 10.1016/j.gloenvcha.2015.09.004
|
[9] |
Roy S, Bose A, Chowdhury I R. Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill, India. Arab J Geosci, 2021, 14(11). DOI: 10.1007/s12517-021-07324-8.
|
[10] |
Bian J, Li S L, He J H. Risk Assessment of flood disaster in the mid-lower reaches of the Yangtze. J Appl Meteor Sci, 2011, 22(5): 604-611. doi: 10.3969/j.issn.1001-7313.2011.05.011
|
[11] |
Xu Y, Zhang B, Zhou B T, et al. Projected risk of flooding disaster in China based on CMIP5 models. Climate Change Research, 2014, 10(4): 268-275. doi: 10.3969/j.issn.1673-1719.2014.04.007
|
[12] |
Li R K, Li Y H, Xu Y. Projection of rainstorm and flooding disaster risk in China in the 21st Century. Journal of Arid Meteorology, 2018, 36(3): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201803001.htm
|
[13] |
Lu J Y, Yan J P, Cao Y W. Spatial distribution characteristics of precipitation and flood index in Southwestern China during 1961-2015. Resources and Environment in the Yangtze Basin, 2017, 26(10): 1711-1720. doi: 10.11870/cjlyzyyhj201710023
|
[14] |
Yan Z T, Li X H, Liu Z T, et al. Risk change of rainstorm and flood disaster in four provinces and cities of Southwestern China under the background of climate warming. Journal of Catastrophology, 2021, 36(2): 200-207. doi: 10.3969/j.issn.1000-811X.2021.02.035
|
[15] |
Ding W R. Spatial and temporal variability of the extreme daily precipitation in Southwestern China. Resources and Environment in the Yangtze Basin, 2014, 23(7): 1029-1037. doi: 10.11870/cjlyzyyhj201407019
|
[16] |
Zhang W L, Zhang J Y, Fan G Z. Evaluation and projection of dry and wet season precipitation in Southwestern China using CMIP5 models. Chinese Journal of Atmospheric Sciences, 2015, 39(3): 559-570. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201503010.htm
|
[17] |
Hu Z H, Li Y H, Hu Y W, et al. Prediction of future precipitation in Southwestern China by CMIP5 and RegCM4.0 models. Mid-Low Latitude Mountain Meteorology, 2020, 44(5): 19-25. doi: 10.3969/j.issn.1003-6598.2020.05.003
|
[18] |
Wu J, Zhou B T, Xu Y. Response of precipitation and its extremes over China to warming CMIP5 simulation and projection. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201509003.htm
|
[19] |
Cheng F, Li Q P, Shen X Y, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. doi: 10.11898/1001-7313.20210504
|
[20] |
Zhao Z C, Luo Y, Huang J B. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models. Climate Change Research, 2018, 14(6): 643-648. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806012.htm
|
[21] |
Xiang J W, Zhang L P, Deng Y, et al. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 2021, 54(1): 46-57;81. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202101008.htm
|
[22] |
Zhao L N, Liu Y, Dang H F, et al. The Progress on application of ensemble prediction to flood forecasting. J Appl Meteor Sci, 2014, 25(6): 641-653. http://qikan.camscma.cn/article/id/20140601
|
[23] |
Wei Y H, Ma L P, Wang B C. Evaluation and measurement of the economic development differences among the eight comprehensive economic zones in China. The Journal of Quantitative & Technical Economics, 2020, 37(6): 89-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY202006005.htm
|
[24] |
Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. doi: 10.11898/1001-7313.20190309
|
[25] |
Wang Y, Li H X, Wang H J, et al. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorologica Sinica, 2021, 79(3): 369-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202103001.htm
|
[26] |
Yue Y L, Yan D, Yue Q, et al. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos Res, 2021, 264: 105828. doi: 10.1016/j.atmosres.2021.105828
|
[27] |
Yang G Y, Pei Y F, Song M H, Evaluation and projection of precipitation in Southwestern China using CMIP6 models. Open Journal of Natural Science, 2021, 9(6): 910-920.
|
[28] |
Zhao Y F, Zhu J. Assessing quality of grid daily precipitation datasets in China in recent 50 years. Plateau Meteorology, 2015, 34(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501006.htm
|
[29] |
Zhang J, Cao L G, Li X C, et al. Advances in shared socio-economic pathways in IPCC AR5. Climate Change Research, 2013, 9(3): 225-228. doi: 10.3969/j.issn.1673-1719.2013.03.012
|
[30] |
Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev, 2019, 12(4): 1443-1475. doi: 10.5194/gmd-12-1443-2019
|
[31] |
Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability, 2016, 11(7). DOI: 10.3390/su11072106.
|
[32] |
Chen X C. Assessment of Precipitation over China Simulated by CMIP5 Multi-models. Beijing: Chinese Academy of Meteorological Sciences, 2014.
|
[33] |
Lin W Q, Chen H P. Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: From CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13(6): 598-603. doi: 10.1080/16742834.2020.1820303
|
[34] |
Liu K, Xu Y L, Tao S C, et al. Validation of multi-model ensemble to air temperature of China and projection of air temperature change in China for the next three decades. Plateau Meteorology, 2011, 30(2): 363-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102012.htm
|
[35] |
Huang P, Ying J. A Multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J Climate, 2015, 28(12): 4706-4723. doi: 10.1175/JCLI-D-14-00833.1
|
[36] |
Lan M C, Hu X L, Liu H W, et al. Seasonal difference analysis of spatial and temporal distribution characteristics of extreme precipitation indexes in Hunan Province in recent 55 years. Acta Agriculturae Jiangxi, 2017, 29(11): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JXNY201711023.htm
|
[37] |
Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer rainfall in China. J Appl Meteor Sci, 2020, 31(5): 570-582. doi: 10.11898/1001-7313.20200505
|
[38] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos, 2001, 106(D7): 7183-7192. doi: 10.1029/2000JD900719
|
[39] |
Wu S H, Dai E F, Ge Q S, et al. Comprehensive Risk Prevention: China's Comprehensive Climate Change Risks. Beijing: Science Press, 2011: 111-125.
|
[40] |
Shao J L, Zheng W. Study on the flood hazard assessment method. Journal of Catastrophology, 2018, 33(2): 58-63. doi: 10.3969/j.issn.1000-811X.2018.02.012
|
[41] |
Feng Q, Tao S Y, Wang A S, et al. Analysis of the influence of heavy-rain and flood disaster on social economy and human life. Journal of Catastrophology, 2001, 16(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200103008.htm
|
[42] |
Jiang Z H, Chen W L, Song J, et al. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models. Chinese J Atmos Sci, 2009, 33(1): 109-120. doi: 10.3878/j.issn.1006-9895.2009.01.10
|