Wang Yuhong, Bica Benedikt. Precipitation extrapolation nowcasting in Beijing-Tianjin-Hebei under different weather backgrounds. J Appl Meteor Sci, 2022, 33(3): 270-281. DOI:  10.11898/1001-7313.20220302.
Citation: Wang Yuhong, Bica Benedikt. Precipitation extrapolation nowcasting in Beijing-Tianjin-Hebei under different weather backgrounds. J Appl Meteor Sci, 2022, 33(3): 270-281. DOI:  10.11898/1001-7313.20220302.

Precipitation Extrapolation Nowcasting in Beijing-Tianjin-Hebei Under Different Weather Backgrounds

DOI: 10.11898/1001-7313.20220302
  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-03-18
  • Publish Date: 2022-05-31
  • Rapid-refresh Multi-Scale Analysis and Prediction System-Integration (RMAPS_IN) is an important tool for Beijing, Hebei and other meteorological departments to make rapid-updated and refined precipitation nowcasting. The precipitation analysis products of the system are based on automatic station observation and radar quantitative precipitation estimation data, while 0-2 h forecast products are obtained by extrapolation based on the analysis products. To study the applicability of different extrapolation methods in RMAPS_IN, the precipitation events of different weather systems from 2019 to 2020 are analyzed, using cross correlation method and optical flow method to conduct a 0-2 h extrapolation nowcasting test based on the RMAPS_IN precipitation analysis products. The cross correlation method uses classic optimal correlation coefficient calculation scheme, while the optical flow method employs the Farneback dense optical flow calculation scheme in the OpenCV function library. According to the characteristics of the regional weather systems, the precipitation events are divided into five types: Low trough cold front precipitation, low vortex precipitation, typhoon precipitation, cyclone precipitation, and warm shear line precipitation. The sample size of each precipitation type is 2108, 1448, 1058, 260, and 140, respectively. The batch test results show that the extrapolated vectors by the cross correlation method and optical flow method have a certain difference in magnitude and direction. The direct difference has a clear correspondence with the position of the weather system that affects precipitation, and is more obviously affected by the geographical location. For typhoon precipitation, the difference in direction is distributed in an arc band, while for other 4 types of precipitation, the difference is large in the northwest and small in the southeast. In terms of forecasting effect, the cross correlation method is generally better than the optical flow method, especially when the forecast time exceeds 30 minutes, and the longer the lead time is, the more obvious the advantage is. But when the forecast time is 10 min, the optical flow method is better in the false alarm rate of low vortex precipitation, typhoon precipitation and warm shear line precipitation. In addition, the nowcasting method based on extrapolation has the best prediction effects on typhoon precipitation in Beijing-Tianjin-Hebei region, followed by warm shear line precipitation, low vortex precipitation, low trough cold front precipitation, and cyclone precipitation. It should be noted that in Beijing-Tianjin-Hebei region, cyclone precipitation and warm shear line precipitation rarely occurred in recent years, and the sample size of these two types of precipitation is significantly smaller than that of other types, so the relevant results are less representative.

  • Fig. 1  Distribution of stations

    (black dots are stations used for RMAPS_IN analyses, red triangles are stations for verification, blue boxes and arrow are the rectangular design when calculating motion vectors)

    Fig. 2  Euclidean distance and Cosine distance of two motion vectors derived by cross correlation and optical flow under different weather backgrounds

    Fig. 3  TS(a), FAR(b), MR(c) for low trough cold front precipitation

    Fig. 4  Low vortex precipitation case at 2300 BT 9 Aug 2020(the shaded denotes precipitation intensity)

    (a)precipitation analysis and motion field based at 2300 BT 9 Aug 2020(the red vector denotes motion field derived by cross correlation, the black vector denotes motion field derived by optical flow), (b)precipitation analysis at 0000 BT 10 Aug, (c)forecast of cross correlation at 60 min from the base time, (d)forecast of optical flow at 60 min from the base time

    Fig. 5  Euclidean distance(a) and Cosine distance(b) of two motion vectors derived by cross correlation and optical flow on 9 Aug 2020

    Fig. 6  Typhoon precipitation case on 11 Aug 2019(the shaded denotes precipitation intensity)

    (a)precipitation analysis and motion field based at 1200 BT(the red vector denotes motion field derived by cross correlation, the black vector denotes motion field derived by optical flow), (b)precipitation analysis at 1300 BT 11 Aug, (c)forecast of cross correlation at 60 min from the base time, (d)forecast of optical flow at 60 min from the base time

    Fig. 7  Euclidean distance(a) and Cosine distance(b) of two motion vectors derived by cross correlation and optical flow on 11 Aug 2019

    Table  1  Dates and sample number of precipitation events under different weather backgrounds

    降水类型 日期 样本量
    低槽冷锋类 2019-05-17,2019-05-18,2019-07-05,2019-07-22,
    2019-07-29,2019-08-04,2019-09-09,2019-10-03,
    2020-05-30,2020-06-24,2020-07-04, 2020-07-05,
    2020-07-17,2020-07-30,2020-08-18,2020-08-23
    2108
    低涡类 2019-07-06,2020-05-07,2020-05-21,2020-06-25,
    2020-06-28,2020-06-29,2020-07-01,2020-07-08,
    2020-07-26,2020-07-28,2020-08-01,2020-08-09,
    2020-08-12,2020-09-14
    1448
    台风类 2019-07-28,2019-08-01,2019-08-09,2019-08-10,
    2019-08-11,2019-08-15,2020-08-05
    1058
    气旋类 2019-05-25,2020-07-12 260
    暖切变线类 2020-08-15,2020-08-16 140
    DownLoad: Download CSV

    Table  2  Scores of nowcastings with different lead-times forecasted by cross correlation and optical flow under different weather backgrounds

    预报时效/min 降水类型 TS评分 空报率 漏报率
    交叉相关法 光流法 交叉相关法 光流法 交叉相关法 光流法
    10 低槽冷锋类 0.41* 0.41* 0.28* 0.28* 0.51* 0.51*
    低涡类 0.49 0.48 0.27** 0.26** 0.42 0.43
    台风类 0.53 0.52 0.28** 0.27** 0.34 0.35
    气旋类 0.41* 0.41* 0.28* 0.28* 0.51* 0.51*
    暖切变线类 0.51 0.50 0.28** 0.27** 0.36 0.38
    30 低槽冷锋类 0.36 0.35 0.35 0.36 0.55 0.57
    低涡类 0.44 0.42 0.32 0.33 0.46 0.49
    台风类 0.47 0.45 0.34 0.35 0.38 0.41
    气旋类 0.35 0.34 0.34 0.36 0.57 0.58
    暖切变线类 0.46 0.44 0.35* 0.35* 0.41 0.43
    60 低槽冷锋类 0.31 0.29 0.42 0.45 0.61 0.64
    低涡类 0.38 0.35 0.40 0.42 0.52 0.56
    台风类 0.39 0.35 0.43 0.45 0.45 0.51
    气旋类 0.29 0.27 0.41 0.44 0.63 0.66
    暖切变线类 0.39 0.37 0.42 0.43 0.46 0.49
    90 低槽冷锋类 0.27 0.24 0.48 0.51 0.66 0.69
    低涡类 0.33 0.30 0.45 0.48 0.56 0.62
    台风类 0.33 0.30 0.50 0.52 0.51 0.57
    气旋类 0.24 0.22 0.48 0.50 0.69 0.71
    暖切变线类 0.35 0.31 0.47 0.50 0.49 0.54
    120 低槽冷锋类 0.23 0.21 0.53 0.56 0.70 0.73
    低涡类 0.30 0.26 0.50 0.53 0.61 0.66
    台风类 0.29 0.25 0.55 0.57 0.55 0.63
    气旋类 0.20 0.19 0.54 0.56 0.74 0.75
    暖切变线类 0.32 0.28 0.52 0.56 0.52 0.58
    注:*表示两种方法评分一致,**表示光流法评分更优,无*号表示交叉相关法评分更优。
    DownLoad: Download CSV
  • [1]
    Chen M X, Yu X D, Tan X G, et al. A brief review on the development of nowcasting for convective storms. J Appl Meteor Sci, 2004, 15(6): 754-766. doi:  10.3969/j.issn.1001-7313.2004.06.015
    [2]
    Zheng Y G, Zhang X L, Zhou Q L, et al. Review on severe convective weather short-term forecasting and nowcasting. Meteor Mon, 2010, 36(7): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201007009.htm
    [3]
    Liu S J, Zhang L. Optical flow method and its application in the field of meteorology. Adv Meteor Sci Tech, 2015, 5(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201504005.htm
    [4]
    Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106
    [5]
    Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101
    [6]
    Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi:  10.11898/1001-7313.20210506
    [7]
    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
    [8]
    Haiden T, Kann A, Wittmann C, et al. The integrated nowcasting through comprehensive analysis(INCA) system and its validation over the Eastern Alpine region. Wea Forecasting, 2011, 26(2): 166-183. doi:  10.1175/2010WAF2222451.1
    [9]
    Haiden T, Kann A, Pistotnik G. Nowcasting with INCA during SNOW-V10. Pure Appl Geophys, 2014, 171: 231-242. doi:  10.1007/s00024-012-0547-8
    [10]
    Cheng C L, Chen M, Chen M X, et al. Comparative experiments on two high spatiotemporal resolution blending algorithm for quantitative precipitation nowcasting. Acta Meteor Sinica, 2019, 77(4): 701-714. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904008.htm
    [11]
    Woo W, Wong W. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere, 2017, 8: 48. doi:  10.3390/atmos8030048
    [12]
    Liu Y, Xi D, Li Z, et al. A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach. J Hydrol, 2015, 529: 354-364. doi:  10.1016/j.jhydrol.2015.07.042
    [13]
    Chen Y Z, Lan X P, Chen X L, et al. A nowcasting technique based on application of the particle filter blending algorithm. J Meteor Res, 2017, 31(5): 931-945. doi:  10.1007/s13351-017-6557-9
    [14]
    Han L, Wang H Q, Lin Y J. Application of optical flow method to nowcasting convective weather. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 44(5): 751-755. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200805019.htm
    [15]
    Zhang L, Wei M, Li N, et al. Improved optical flow method application to extrapolate radar echo. Sci Tech Engrg, 2014, 14(32): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201432029.htm
    [16]
    Cao C Y, Chen Y Z, Liu D H, et al. The optical flow method and its application to nowcasting. Acta Meteor Sinica, 2015, 73(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503005.htm
    [17]
    Horn B K P, Schunck B G. Determining optical flow. Artif Intell, 1981, 17: 185-204. doi:  10.1016/0004-3702(81)90024-2
    [18]
    Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision//Proc 7th Int Joint Conf on Artif Intell, 1981: 674-679.
    [19]
    Farneback G. Very High Accuracy Velocity Estimation Using Orientation Tensors, Parametric Motion, and Simultaneous Segmentation of the Motion Field//Proc 8th IEEE Int Conf on IEEE, 2002: 171-177.
    [20]
    An J J, Liu G P, Zhu J N. Application of Farneback optical flow method in nowcasting. Comput Engineer & Soft, 2018, 39(10): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-RJZZ201810006.htm
    [21]
    Cao W H, Chen M X, Gao F, et al. A vector blending study based on object-based tracking vectors and cross correlation tracking vectors. Acta Meteor Sinica, 2019, 77(6): 1015-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906004.htm
    [22]
    Song L Y, Chen M X, Cheng C L, et al. Characteristics of summer QPE error and a climatological correction method over Beijing-Tianjin-Hebei region. Acta Meteor Sinica, 2019, 77(3): 497-515. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903009.htm
    [23]
    Feng L, Wang X F, He X F, et al. Fine forecast of high road temperature along Jiangsu highways based on INCA system and METRo Model. J Appl Meteor Sci, 2017, 28(1): 109-118. doi:  10.11898/1001-7313.20170110
    [24]
    Wei Q, Li W, Peng S, et al. Development and application of national verification system in CMA. J Appl Meteor Sci, 2019, 30(2): 245-256. doi:  10.11898/1001-7313.20190211
    [25]
    Song S Y, Peng J, Lian Z L, et al. Weather Forecast Manual of Hebei. Beijing: China Meteorological Press, 2017: 65-73.
    [26]
    Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. doi:  10.11898/1001-7313.20210303
    [27]
    Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi:  10.11898/1001-7313.20220104
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (1237) PDF downloads(136) Cited by()
    • Received : 2021-12-01
    • Accepted : 2022-03-18
    • Published : 2022-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint