Liu Haizhi, Xu Hui, Bao Hongjun, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. DOI:  10.11898/1001-7313.20220303.
Citation: Liu Haizhi, Xu Hui, Bao Hongjun, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. DOI:  10.11898/1001-7313.20220303.

Application of Machine Learning Classification Algorithm to Precipitation-induced Landslides Forecasting

DOI: 10.11898/1001-7313.20220303
  • Received Date: 2022-01-25
  • Rev Recd Date: 2022-03-28
  • Publish Date: 2022-05-31
  • To address the practical needs of objectively describing the uncertainty of rainfall-based landslides and the existing problems of single warning indicators and subjective forecasting methods in the meteorological disaster early warning business, landslide disaster data from 2014 to 2020 and multi-source used precipitation analysis data are investigated to construct a regional rainfall-induced landslides probability forecasting model. Machine learning classification algorithms is implemented through key steps such as sample construction, model training, parameter optimization and forecast output to explore the feasibility of different types of algorithms in identifying landslides-causing rainfall processes. A training sample set construction method based on the positive samples, the negative samples are obtained by sampling under spatial-temporal limitation. The evaluation of different machine learning classification algorithms using the sample set shows that linear discriminant analysis algorithm has the highest accuracy(0.863) and the best generalization ability(area under the receiver operating characteristic curve is 0.886) without over-fitting problem, followed by the logistic regression algorithm and the K-nearest neighbor algorithm. In the probabilistic forecasting test for the cases of rainfall-induced landslides in 2021, all of three algorithms can extract and learn the conditional features and have certain ability to identify the rainfall processes which induce landslides. K-nearest neighbor algorithms and logistic regression algorithms have a relatively large range of probabilistic forecasting high value areas, which are prone to false alarm results. The probability forecast of the linear discriminant analysis algorithms is more convergent in the range of the high value area, and it can extract local rainfall information better, but it outputs unnecessary low-value probability forecasts in non-rainfall central area. The rainfall-induced landslides probability prediction model based on the machine learning classification algorithm comprehensively considers the coupling effect of the underlying surface factor and the rainfall factor, which is better than the commonly used critical threshold model that assumes the occurrence of landslides in the forecast area is only related to rainfall. The application results show that the machine learning classification algorithm model makes up for the shortcomings of existing forecasting models that are less likely to reflect the influence of the surface environment, so it is an important way to improve the performance of landslides forecasting and warning.

  • Fig. 1  Distribution of landslides in 2014-2020

    Fig. 2  Underlying surface type

    Fig. 3  Landslides susceptibility

    Fig. 4  Rainfall critical threshold model

    Fig. 5  Probability forecast results at 2000 BT 21 May 2021

    Fig. 6  Probability forecast results at 2000 BT 4 Oct 2021

    Table  1  Model algorithms test results

    模型算法 ACC AUC
    线性判别分析 0.863 0.886
    最邻近 0.838 0.858
    逻辑回归 0.840 0.879
    随机森林 0.834 0.849
    支持向量机 0.821 0.819
    决策树 0.832 0.841
    临界阈值 0.658 0.693
    DownLoad: Download CSV

    Table  2  Cases of rainfall-induced landslides

    编号 发生时间 发生位置 阈值模型预报
    个例1 2021-05-22T04:00 福建省宁德市国道104线福安路段(27.0°N,119.7°E) 未发生滑坡
    个例2 2021-07-26T10:00 浙江省绍兴市柯桥区平水镇下灶村(29.9°N,120.7°E) 发生滑坡
    个例3 2021-08-29T14:00 重庆市开州区关面乡关面社区(31.6°N,108.9°E) 发生滑坡
    个例4 2021-09-05T16:00 四川省巴中市通江县空山镇五福村(32.5°N,107.4°E) 发生滑坡
    个例5 2021-10-05T23:00 山西省临汾市蒲县蒲城镇荆坡村(36.4°N,111.1°E) 未发生滑坡
    DownLoad: Download CSV
  • [1]
    Wei L, Chen S X, Bian X G. Trial study on factors analysis and prediction of landslide hazard triggered by extreme heavy rainfall. J Appl Meteor Sci, 2007, 18(5): 682-689. doi:  10.3969/j.issn.1001-7313.2007.05.013
    [2]
    Chen Y L, Zhao L N, Wang Y, et al. Review on forecast methods of rainfall-induced geo-hazards. J Appl Meteor Sci, 2019, 30(2): 142-153. doi:  10.11898/1001-7313.20190202
    [3]
    Zhou Y, Liu Z P, Zhang G P. Probability forecasting model of geological disaster along the Yingxia railway induced by pre-cipitation with its application. J Appl Meteor Sci, 2015, 26(6): 743-749. doi:  10.11898/1001-7313.20150611
    [4]
    Lumb P. Slope failures in Hong Kong. Q J Eng Geol Hydrogeol, 1975, 8(9): 31-65.
    [5]
    Brand E W, Premchitt J, Phillipson H B. Relationship Between Rainfall and Landslides in Hong Kong//Proc 4th Int Symposium Landslides, 1984: 377-384.
    [6]
    Brand E W. Predicting the Performance of Residual Soil Slopes//Proc 11th Int Conf on Soil Mechanics and Foundation Engineering, 1985: 2541-2578.
    [7]
    Liu Y H, Tang C, Li T F, et al. Statistical relation between geo-hazards and rain type. J Eng Geol, 2009, 17(5): 656-661. doi:  10.3969/j.issn.1004-9665.2009.05.012
    [8]
    Ding L, Peng J H, Tan G M. Methods for forecasting geological-meteorological disasters in Chengde. Meteor Sci Technol, 2006, 34(6): 750-753. doi:  10.3969/j.issn.1671-6345.2006.06.021
    [9]
    Chen L, Wang D F, Pan J S, et al. On meteorological forecasting models for geological disasters in Zhejiang Province. J Trop Meteor, 2012, 28(5): 764-770. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201205018.htm
    [10]
    Xu H, Liu H Z. Multi-scale rainfall characteristics of rainfall-induced landslides. Mountain Research, 2019, 37(6): 858-867. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201906007.htm
    [11]
    Wei F Q, Tang J F, Xie H, et al. Debris flow forecast combined regions and valleys and its application. Mountain Research, 2004, 22(3): 321-325. doi:  10.3969/j.issn.1008-2786.2004.03.011
    [12]
    Ma Z J, Chen H L, Yang S F. Prediction of landslide hazard based on support vector machine theory. J Zhejiang University(Sci Ed), 2003, 30(5): 592-596. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX200305027.htm
    [13]
    Dai F C, Lee C F. A Spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land, 2003, 28: 527-545. doi:  10.1002/esp.456
    [14]
    Tang C, Zhu J. Landslides & Debris Flow in Yunnan. Beijing: China Commercial Press, 2003.
    [15]
    Cong W Q, Pan M, Li T F, et al. Quantitative analysis of critical rainfall-triggered debris flow. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(SupplⅠ): 2808-2812. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1031.htm
    [16]
    Hu J, Min Y, Li H H, et al. Meteorological early-warning research of mountain torrent and geologic hazard in Yunnan Province. J Catastrophology, 2014, 29(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201401012.htm
    [17]
    Hou A Y, Kakar R K, Neeck S, et al. The global precipitation measurement mission. Bull Amer Meteor Soc, 2014, 95(5): 701-722. doi:  10.1175/BAMS-D-13-00164.1
    [18]
    Lü H, Hou T, Horton R, et al. The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. J Hydrol, 2013, 480(4): 102-114.
    [19]
    An Y Y, Jin F L, Zhang Y F, et al. Automatic identification methods of ground raindrop spectrum observation and image. J Appl Meteor Sci, 2008, 19(2): 188-193. doi:  10.3969/j.issn.1001-7313.2008.02.008
    [20]
    Qian J M, Sun A L, Xu Z, et al. Fengyun series meteorological satellite data archiving and service system. J Appl Meteor Sci, 2012, 23(3): 369-376. doi:  10.3969/j.issn.1001-7313.2012.03.014
    [21]
    Chen M X, Gao F, Sun J Z, et al. An analysis system using rapid-updating 4-D variational radar data assimilation based on VDRAS. J Appl Meteor Sci, 2016, 27(3): 257-272. doi:  10.11898/1001-7313.20160301
    [22]
    Zhi X F, Zhao C. Heavy precipitation forecasts based on multi-model ensemble members. J Appl Meteor Sci, 2020, 31(3): 303-314. doi:  10.11898/1001-7313.20200305
    [23]
    Wei G F, Liu H J, Wu Q S, et al. Multi-model consensus forecasting technology with optimal weight for precipitation intensity levels. J Appl Meteor Sci, 2020, 31(6): 668-680. doi:  10.11898/1001-7313.20200603
    [24]
    Yu J J, Shen Y, Pan Y, et al. Improvement of satellite-based precipitation estimates over China baesd on probability density function matching method. J Appl Meteor Sci, 2013, 24(5): 544-553. doi:  10.3969/j.issn.1001-7313.2013.05.004
    [25]
    Fu Y P, Chang H, Li K. Assessment of probable occurrence level of geological hazard subdistrict in Gucheng County, Hubei Province. Geol Survey Res, 2007, 30(1): 70-78. doi:  10.3969/j.issn.1672-4135.2007.01.010
    [26]
    Hu J, Li B, Yang Y F. The application of GIS in geological hazard susceptibility zonation in Ludian County, Yunnan. J Catastrophology, 2008, 23(1): 73-75;87. doi:  10.3969/j.issn.1000-811X.2008.01.017
    [27]
    Shannon C. A mathematical theory of communication. Bell System Technical Journal, 1948, 27(4): 623-656. doi:  10.1002/j.1538-7305.1948.tb00917.x
    [28]
    Zhang Y C, Qin S W, Zhai J J, et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai Mountain area. Hydrogeology & Engineering Geology, 2018, 45(2): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802023.htm
    [29]
    Zhang C S, Zhang Y C, Ma Y S. Regional dangerous on the geological hazards of collapse, landslide and debris flows in the upper reaches of the Yellow River. J Geomech, 2003, 9(2): 143-153. doi:  10.3969/j.issn.1006-6616.2003.02.007
    [30]
    Bennett G L, Miller S R, Roering J J, et al. Threshold slopes and the survival of relict terrain in the wake of the mendocino triple junction. Geology, 2016, 44(5): 363-366. doi:  10.1130/G37530.1
    [31]
    Kornejady A, Ownegh M, Bahremand A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 2017, 152: 144-162. doi:  10.1016/j.catena.2017.01.010
    [32]
    Chen W, Pourghasemi H R, Zhao Z. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto Int, 2017, 32(4): 367-385. doi:  10.1080/10106049.2016.1140824
    [33]
    Aleotti P. A warning system for rainfall-induced shallow failures. Engineering. Geology, 2004, 73: 247-265.
    [34]
    Pasuto A, Silvano S. Rainfall as a triggering factor of shallow mass movements. A case study in the Dolomites, Italy. Environ Geol, 1998, 35(2/3): 184-189.
    [35]
    Liu H Z, Ma Z F, Fan G Z. Relationship between landslide/debris flow and rainfall in typical region of Sichuan Province. Bull Soil Water Conserv, 2016, 36(6): 73-77.
    [36]
    Zhou Z H. Machine Learning. Bejing: Tsinghua University Press, 2016.
    [37]
    Zhai P, Zhang X, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate, 2005, 18(7): 1096-1108. doi:  10.1175/JCLI-3318.1
    [38]
    Zhang H, Zhai P M. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv Atmos Sci, 2011, 28(5): 1177-1183. doi:  10.1007/s00376-011-0020-0
    [39]
    Xiao C, Wu P, Zhang L, et al. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci Rep, 2016, 6: 38506. doi:  10.1038/srep38506
    [40]
    Wu M, Luo Y, Chen F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteor Climatol, 2019, 58(8): 1799-1819. doi:  10.1175/JAMC-D-18-0284.1
    [41]
    Wang Y, Zhou L. Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation. Geophys Res Lett, 2005, 32(9): L09707. DOI:  10.1029/2005GL22574.
    [42]
    Luo Y, Wu M, Ren F, et al. Synoptic situations of extreme hourly precipitation over China. J Climate, 2016, 29(24): 8703-8719. doi:  10.1175/JCLI-D-16-0057.1
    [43]
    Guzzetti F, Peruccacci S, Rossi M, et al. Rainfall thresholds for the initiation of landslides. Meteor Atmos Phys, 2007, 98(3/4): 239-267.
    [44]
    Wang Y Q. An open source software suite for multi-dimensional meteorological data computation and visualisation. J Syst Software, 2019, 7(3). DOI:  10.5334/jors.267.
    [45]
    Wang Y Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteor Appl, 2014, 21(2): 360-368. doi:  10.1002/met.1345
    [46]
    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (1712) PDF downloads(228) Cited by()
    • Received : 2022-01-25
    • Accepted : 2022-03-28
    • Published : 2022-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint