Xu Yue, Shao Meirong, Tang Kai, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. DOI:  10.11898/1001-7313.20220305.
Citation: Xu Yue, Shao Meirong, Tang Kai, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. DOI:  10.11898/1001-7313.20220305.

Multiscale Characteristics of Two Supercell Tornados of Heilongjiang in 2021

DOI: 10.11898/1001-7313.20220305
  • Received Date: 2022-01-28
  • Rev Recd Date: 2022-03-21
  • Publish Date: 2022-05-31
  • Two strong supercell tornados hit Shangzhi Acheng of Harbin and Meilisi of Qiqihar, Heilongjiang Province on 1 June ("6·1" Tornado) and 9 June ("6·9" Tornado) in 2021. Using the conventional meteorological observations and Doppler weather radar data, the multiscale characteristics of two events are analyzed.Both events occur in the southeast quadrant of northeastern cold vortex. The left outlet of the upper-level jet stream and the southerly jet stream at lower-level are conducive to the development of vertical movement and the transport of warm-wet air. The temperature difference between 850 hPa and 500 hPa exceeds 30℃. Two storms are both triggered by mesoscale dry-lines and convergence lines. The pseudo-cold fronts, which generate from the mesoscale warm front and the cold pool coming from the thunderstorm outflow, are beneficial to the development and maintenance of tornados. Tornados appear on the wet part of the junctions between the pseudo-cold front and dry line, and in the front of cold pool. The parent storms of tornados rapidly develop into supercells as they pass over water bodies such as reservoirs and wetlands. The warm-wet inflow gap indicates the development of hook echo. Medium to strong mesocyclones firstly appear at about 3 km high, and then go upwards and downwards, touchdown 5-10 minutes later. The tornados occur when hook echoes and mesocyclones appear simultaneously.There are also some differences between them. Short-time heavy rainfall occurs on 1 June and thunder-gust occurs on 9 June with typical sounding layer structures, but "6·1" Tornado is stronger. The atmospheric instabilities are dominated by cold advection at upper-level for "6·1" Tornado but warm advection at lower-level for "6·9" Tornado. Water vapor and vertical velocity of "6·1" Tornado is more beneficial to the development of supercell than those of "6·9" Tornado. For the vertical wind shears of 0-1 km and 0-6 km, the corrected lifting condensation level and convective available potential energy (CAPE) are 12 m·s-1, 18 m·s-1, 770 m and 420 J·kg-1 for "6·1" Tornado, and 10 m·s-1, 33 m·s-1, 1100 m and 2500 J·kg-1 for "6·9" Tornado. The stronger 0-1 km wind shears and the lower corrected lifting condensation level show the possibility of intense tornado. CAPE may be underestimated because of the spatiotemporal resolution limitation for soundings.The main cause for the long duration of "6·1" Tornado is that the mesoscale vortex at 3 km altitude maintains due to the continuous warm-wet inflow. However, the strong mesocyclone of "6·9" Tornado doesn't last that long.

  • Fig. 1  Tracks of "6·1" Tornado and "6·9" Tornado in 2021

    Fig. 2  Pictures of "6·1" Tornado and "6·9" Tornado in 2021

    Fig. 3  The geopotential height(the blue contour, unit: dagpm) at 500 hPa, the air temperature(the red contour, unit: ℃), wind(the barb) and the relative humidity(the shaded) at 850 hPa for "6·1" Tornado and "6·9" Tornado in 2021(the red spot denotes the tornado location)

    Fig. 4  Surface mesoscale characteristics of "6·1" Tornado and "6·9" Tornado

    (the blue line denotes the cool pool, the red line denotes the mesoscale warm front, the black line denotes the dew point temperature)

    Fig. 5  Evolution of reflectivity and radial velocity at 0.5° elevation of Harbin radar for "6·1" Tornado during 1658-1754 BT on 1 Jun 2021

    (the yellow arrow denotes inflow, the blue arrow denotes outflow)

    Fig. 6  Multiple supercell and mesocyclones at different elevations of Qiqihar radar for "6·9" Tornado at 1642 BT 9 Jun 2021

    (the circle denotes velocity ambiguity, the yellow arrow denotes inflow, the blue arrow denotes outflow)

    Fig. 7  Base and top heights of mesocyclones and vertical integrated liquid water content for "6·1" Tornado and "6·9" Tornado

    Table  1  Sounding parameters before and after correction for "6·1" Tornado and "6·9" Tornado

    日期 探空时间(低层水汽状态) 订正时间 订正站点 CAPE/(J·kg-1) CIN/(J·kg-1) LCL/m
    2021-06-01 08:00 08:00 哈尔滨 97 13 310
    (湿区) 16:00 尚志 429 0 770
    20:00 16:00 哈尔滨 493 0 1528
    (干区) 20:00 哈尔滨 15 230 1785
    2021-06-09 08:00 08:00 齐齐哈尔 137 0 487
    (湿区) 16:00 齐齐哈尔 2569 0 1116
    20:00 18:00 齐齐哈尔 483 0 1863
    (干区) 20:00 齐齐哈尔 938 0 1487
    DownLoad: Download CSV
  • [1]
    Fujita T T. Tornadoes and downbursts in the context of generalized planetary scales. J Atmos Sci, 1981, 38(8): 1511-1534. doi:  10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
    [2]
    Fujita T T. The Teton-Yellowstone tornado of 21 July 1987. Mon Wea Rev, 1989, 117(9): 1913-1940. doi:  10.1175/1520-0493(1989)117<1913:TTYTOJ>2.0.CO;2
    [3]
    Lemon L R, Doswell Ⅲ C A. Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon Wea Rev, 1979, 107(9): 1184-1197. doi:  10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2
    [4]
    Doswell D C, Bluestein H B. The 8 June 1995 Mclean, Texas, storm. Part Ⅰ: Observations of cyclic tornadogenesis. Mon Wea Rev, 2002, 130(11): 2626-2648. doi:  10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2
    [5]
    Markowski P M. Hook echoes and rear-flank downdrafts: A review. Mon Wea Rev, 2002, 130(4): 852-876. doi:  10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2
    [6]
    Wurman J, Richardson Y, Alexander C, et al. Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon Wea Rev, 2007, 135(6): 2392-2405. doi:  10.1175/MWR3404.1
    [7]
    Trapp R J, Davies-Jones R. Tornadogenesis with and without a dynamic pipe effect. J Atmos Sci, 1997, 54(1): 113-133. doi:  10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2
    [8]
    Trapp R J, Fiedler B Ⅱ. Tornado-like vortexgenesis in a simplified numerical model. J Atmos Sci, 1995, 52(21): 3757-3778. doi:  10.1175/1520-0469(1995)052<3757:TLVIAS>2.0.CO;2
    [9]
    Markowski P M, Richardson Y P. The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J Atmos Sci, 2013, 71(1): 243-275.
    [10]
    Nowotarski C J, Markowski P M, Richardson Y P, et al. Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon Wea Rev, 2015, 143(1): 272-297. doi:  10.1175/MWR-D-14-00151.1
    [11]
    Fan W J, Yu X D. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor Mon, 2015, 41(7): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htm
    [12]
    Wei W X, Zhao Y M. The characteristics of tornadoes in China. Meteor Mon, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htm
    [13]
    Gao S T, Zou Q J, Yang S. A preliminary study on the dynamics of tornado formation. Adv Meteor Sci Tech, 2018, 8(2): 24-35. doi:  10.3969/j.issn.2095-1973.2018.02.002
    [14]
    Zheng Y G. Review of climatology and favorable environmental conditions of tornado in China. Adv Meteor Sci Tech, 2020, 10(6): 69-75. doi:  10.3969/j.issn.2095-1973.2020.06.012
    [15]
    Zhou X M, Zheng Y G. Analysis of environmental conditions and tornado storm features of two tornadoes in Jiangsu during the Meiyu period in 2020. Adv Meteor Sci Tech, 2020, 10(6): 34-42. doi:  10.3969/j.issn.2095-1973.2020.06.008
    [16]
    Zhang Y J, Yuan W H, Xu B Y. Analysis of the tornado storm based on Doppler weather radar data in Funing. J Arid Meteor, 2019, 37(3): 409-418. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201903008.htm
    [17]
    Xu F, Zheng Y Y, Sun K Y. Characteristics of spatio-temporal distribution and storm morphologies of tornadoes in Jiangsu Province. Meteor Mon, 2021, 47(5): 517-528. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202105001.htm
    [18]
    Zhou H G. Observations of 23 June 2016 EF4 tornado supercell thunderstorm mesoscale structure in Funing County, Jiangsu Province. Chinese J Geophys, 2018, 61(9): 3617-3639. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809012.htm
    [19]
    Yao Y Q, Hao Y, Zhang Y J, et al. Synoptic situation and pre-warning of Anhui tornado. Plateau Meteor, 2012, 31(6): 1721-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201206027.htm
    [20]
    Wang P L. On the environmental conditions for genesis of tornadoes in Zhujiang River Delta in Spring. J Trop Meteor, 1996, 12(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX601.007.htm
    [21]
    Huang X X, Yu X D, Yan L J, et al. An analysis on tornadoes in Typhoon Ewiniar. Acta Meteor Sinica, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htm
    [22]
    Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [23]
    Chen Y Z, Yu X D, Chen X L, et al. A tornado in South China in May 2015. J Appl Meteor Sci, 2016, 27(3): 334-341. doi:  10.11898/1001-7313.20160308
    [24]
    Huang X X, Yu X D, Yan L J, et al. Analysis of typhoon-tornado activity characteristics and environmental condition in the Pearl River Delta. Meteor Mon, 2019, 45(6): 777-790. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201906004.htm
    [25]
    Huang X X, Yu X D, Yan L J, et al. Analysis of the 13 April 2019 strong tornado in Xuwen County, Guangdong Province. Meteor Mon, 2021, 47(2): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102008.htm
    [26]
    Lin Y, Wang X H, Gu P S, et al. Analysis on the Doppler weather radar characteristics of EF2 tornado in Rudong during the summer 2016. J Meteor Sci, 2018, 38(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201803013.htm
    [27]
    Feng J W, Min J Z, Zhuang X R. The spatial and temporal distribution of Chinese tornados and their characteristics analysis of environmental physical variations. J Trop Meteor, 2017, 33(4): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201704010.htm
    [28]
    Wang X M, Yu X D, Zhou X G. Study of Northeast China tornadoes: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm
    [29]
    Zhu H R, Zhang H L, Sun S, et al. Climate characteristics of tornado from 1956 to 2011 in Heilongjiang Province. J Meteor Environ, 2015, 31(3): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201503015.htm
    [30]
    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [31]
    Wang N, Wang T T, Zhang S, et al. Observation of a tornado in the circulation background of northeast cold vortex. J Appl Meteor Sci, 2014, 25(4): 463-469. doi:  10.3969/j.issn.1001-7313.2014.04.009
    [32]
    Wang T T, Wang N, Yao Y, et al. Comparison analysis of formation mechanisms of two tornado cases under the background of Northeast cold vortex. J Meteor Environ, 2017, 33(6): 9-15. doi:  10.3969/j.issn.1673-503X.2017.06.002
    [33]
    Zhang T, Guan L, Zheng Y G, et al. Damage survey of the 3 July 2019 Kaiyuan tornado in Liaoning Province and its evolution revealed by disaster. Meteor Mon, 2020, 46(5): 603-617. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202005002.htm
    [34]
    Zheng Y G, Lan Y, Cao Y C, et al. Environmental conditions, evolution and mechanisms of the EF4 tornado in Kaiyuan of Liaoning Province on 3 July 2019. Meteor Mon, 2020, 46(5): 589-602. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202005001.htm
    [35]
    Yuan C, Wang S G, Ma X Y, et al. Environmental background and formative mechanisms of a tornado occurred in Kaiyuan on 3 July 2019. Plateau Meteor, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htm
    [36]
    Yan Q, Zhang A Z, Shen L D, et al. Observational analysis of tornado in Kaiyuan of 2019. J Catastrophology, 2021, 36(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101022.htm
    [37]
    Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi:  10.11898/1001-7313.20200504
    [38]
    Grams J S, Thompson R L, Snively V, et al. A climatology and comparison of parameters for significant tornado events in the United States. Wea Forecasting, 2012, 27: 106-123. doi:  10.1175/WAF-D-11-00008.1
    [39]
    Davies-Jones R. Streamwise vorticity: The origin of updraft rotation in supercell storms. J Atmos Sci, 1984, 41(20): 2991-3006. doi:  10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
    [40]
    Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304
    [41]
    Wang J L, Yu X D, Tang X Z, et al. Characteristics of convective-traggering drylines in the drainage area of Huanghe and Huaihe Rivers. J Appl Meteor Sci, 2021, 32(5): 592-602. doi:  10.11898/1001-7313.20210507
    [42]
    Yang W, Fang Y, Jiang S, et al. Characteristics of the waterspout in east Dongting Lake on 13 August 2017. J Appl Meteor Sci, 2020, 31(3): 328-338. doi:  10.11898/1001-7313.20200307
    [43]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (1091) PDF downloads(150) Cited by()
    • Received : 2022-01-28
    • Accepted : 2022-03-21
    • Published : 2022-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint