等级 | 降水因子 | 大风因子 |
第1级 | 雨危险性 | 风危险性 |
第2级(气象要素) | 降水 | 风速 |
第3级(因子) | 过程日最大降水量(单站), 过程累积最大降水量(单站), 过程1 h最大降水量, 过程3 h最大降水量, 过程暴雨站日数, 过程大暴雨站日数, 过程特大暴雨站日数 | 过程日最大风速(单站), 过程日极大风速(单站), 过程最大风速不低于8级站日数, 过程极大风速不低于12级站日数 |
Citation: | Zhuang Yao, Bao Ruijuan, Zhang Rongyan, et al. Refined risk assessment of tropical cyclone disasters in Fujian. J Appl Meteor Sci, 2022, 33(3): 319-328. DOI: 10.11898/1001-7313.20220306. |
Table 1 Risk assessment index system of tropical cyclone disaster-causing factors
等级 | 降水因子 | 大风因子 |
第1级 | 雨危险性 | 风危险性 |
第2级(气象要素) | 降水 | 风速 |
第3级(因子) | 过程日最大降水量(单站), 过程累积最大降水量(单站), 过程1 h最大降水量, 过程3 h最大降水量, 过程暴雨站日数, 过程大暴雨站日数, 过程特大暴雨站日数 | 过程日最大风速(单站), 过程日极大风速(单站), 过程最大风速不低于8级站日数, 过程极大风速不低于12级站日数 |
Table 2 Risk assessment classification of disaster-causing factors for tropical cyclone disaster at county level
等级 | 含义 | 降水因子 | 大风因子 | 风雨综合因子 |
1 | 低危险 | 0~0.2060 | 0~0.0995 | 0~0.1255 |
2 | 较低危险 | 0.2061~0.2967 | 0.0996~0.1954 | 0.1256~0.2158 |
3 | 中等危险 | 0.2968~0.4017 | 0.1955~0.2853 | 0.2159~0.3209 |
4 | 较高危险 | 0.4018~0.5230 | 0.2854~0.4495 | 0.3210~0.4490 |
5 | 高危险 | 0.5231~1 | 0.4496~1 | 0.4491~1 |
Table 3 Risk assessment classification of disaster-causing factors for tropial cyclone disaster at township level
等级 | 含义 | 降水因子 | 大风因子 | 风雨综合因子 |
1 | 低危险 | 0~0.2252 | 0~0.2124 | 0~0.1051 |
2 | 较低危险 | 0.2253~0.3206 | 0.2125~0.2767 | 0.1052~0.2041 |
3 | 中等危险 | 0.3207~0.4312 | 0.2768~0.3300 | 0.2042~0.2917 |
4 | 较高危险 | 0.4313~0.5413 | 0.3301~0.4039 | 0.2918~0.4078 |
5 | 高危险 | 0.5414~1 | 0.4040~1 | 0.4079~1 |
[1] |
Chen X. Vulnerability diagnosis and assessment of typhoon disaster system at coastal regions, a case study of Fujian Province. J Catastrophology, 2007, 22(3): 6-10. doi: 10.3969/j.issn.1000-811X.2007.03.002
|
[2] |
Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoon. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103
|
[3] |
Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304
|
[4] |
Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scaled circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306
|
[5] |
Dilley M, Chen R S, Deichmann U, et al. Natural Disaster Hot- spots: A Risk Analysis Synthesis Report. Washington DC: Hazard Management Unit, World Bank, 2005: 1-132.
|
[6] |
Wei Z J, Sui G J, Tang D L. An Overview of assessment and approaches on typhoon disaster. J Catastrophology, 2012, 27(4): 107-113. doi: 10.3969/j.issn.1000-811X.2012.04.023
|
[7] |
Yin J, Dai E F, Wu S H. Integrated risk assessment and zoning of typhoon disaster in China. Sci Geogr Sinica, 2013, 33(11): 1370-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201311012.htm
|
[8] |
Han J, Dai E F. System-dynamics-based disaster reduction decision for typhoon disaster. J Catastrophology, 2021, 36(2): 220-227;234. doi: 10.3969/j.issn.1000-811X.2021.02.038
|
[9] |
Ye D J, Wang G F, Yin Y Z, et al. Study on typhoon disaster assessment at county level based on grey relational analysis. J Marine Meteor, 2019, 39(1): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201901007.htm
|
[10] |
He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|
[11] |
Chen Y L, Zhu X C, Hu B, et al. Investigate on the pre-assessment of typhoon disaster in Ningbo based on BP neural network. Trans Atmos Sci, 2018, 41(5): 668-675. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201805010.htm
|
[12] |
Tan R P, Zhang W D. Multiple attribute decision making method based on DEMATEL and fuzzy distance of trapezoidal fuzzy neutrosophic numbers and its application in typhoon disaster evaluation. J Intell Fuzzy Syst, 2020, 39(3): 3413-3439. doi: 10.3233/JIFS-191758
|
[13] |
Zhang R Y, Xu Z H, You L J, et al. Wind and rainfall features and risk assessment of tropical cyclone in Fujian. J Appl Meteor Sci, 2012, 23(6): 672-682. doi: 10.3969/j.issn.1001-7313.2012.06.004
|
[14] |
Chen K J, Chen Y Y, Chen J. Risk assessment and analysis of typhoon disaster in east Guangdong in the period 1989-2017. Res Soil Water Conserv, 2019, 26(3): 362-366;372. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201903056.htm
|
[15] |
Kong L S, Zhang X Z. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. doi: 10.11898/1001-7313.20220105
|
[16] |
Zhu J, Lu Y, Li G P, et al. Risk assessment of typhoon disaster in Fujian Provice of each country. J Catastrophology, 2017, 32(3): 204-209. doi: 10.3969/j.issn.1000-811X.2017.03.034
|
[17] |
Lin R X, Ye J Y. Visualization analysis of the typhoon researches in China. Journal of Institute of Disaster Prevention, 2020, 22(1): 38-45. doi: 10.3969/j.issn.1673-8047.2020.01.006
|
[18] |
Zhang Y, Li S S, Chen H, et al. Evaluation of typhoon disaster risk in Guangdong Province. J Trop Meteor, 2017, 33(2): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201702015.htm
|
[19] |
Yu X B, Yu X R, Ji Z H, et al. Risk assessment and analysis of typhoon disaster in China's south-east coastal areas-based on information diffusion theory. J Catastrophology, 2019, 34(1): 73-77. doi: 10.3969/j.issn.1000-811X.2019.01.015
|
[20] |
Liu H X, Lu Y J, Wang M, et al. Risk assessment of extreme typhoon disasters based on information diffusion technology. J Trop Ocean, 2020, 39(3): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202003004.htm
|
[21] |
Zhou Y F, Cheng X N, Cai J, et al. Study on comprehensive risk assessment of typhoon disasters. China Public Security(Academy Editon), 2013(1): 31-37. doi: 10.3969/j.issn.1672-2396.2013.01.008
|
[22] |
Li Z Y, Xu Y W, Wang J Y, et al. Evaluation model of meteorological disaster loss with normalized indices based on projection pursuit regression. J Appl Meteor Sci, 2016, 27(4): 480-487. doi: 10.11898/1001-7313.20160411
|
[23] |
Yang T, Duan Y H, Xu J, et al. Simulation of the urbanization impact on precipitation of landfalling tropical cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. doi: 10.11898/1001-7313.20180403
|
[24] |
Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi: 10.3969/j.issn.1001-7313.2009.06.017
|
[25] |
Wei Z J, Ma H L, Tang D L. Trend assessment of typhoon disasters based on the improved entropy method. J Catastrophology, 2017, 32(3): 7-11. doi: 10.3969/j.issn.1000-811X.2017.03.002
|
[26] |
Lu Y J, Liu H X, Wang M. Typhoon disaster risk assessment based on combined weights and fuzzy stochastic methods. Fuzzy Systems and Mathematicis, 2020, 34(2): 151-163. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE202002017.htm
|
[27] |
Xu H S, Lian J J, Bin L L, et al. Joint distributionof multiple typhoon hazard factors. Sci Geogr Sinica, 2018, 38(12): 2118-2124. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201812021.htm
|
[28] |
Niu H Y, Liu M, Lu M, et al. Risk assessment of typhoon hazard factors in China coastal areas during last 20 years. Journal of East China Normal University(Nat Sci Ed), 2011, 31(6): 20-25;35. doi: 10.3969/j.issn.1000-5641.2011.06.003
|
[29] |
Liu F T, Xu E Q. Spatio-temporal correlation analysis of typhoon characteristics and disaster assessment in Hainan Province. J Catastrophology, 2020, 35(2): 217-223. doi: 10.3969/j.issn.1000-811X.2020.02.039
|
[30] |
Zhang Z W, Zhang J H, Zhao Z Z, et al. Analysis of risks in Hainan Island typhoon hazard factor based on GIS. J Anhui Agri Sci, 2011, 39(11): 6587-6590. doi: 10.3969/j.issn.0517-6611.2011.11.112
|
[31] |
Gong Z W, Hu L. Influence factor analysis of typhoon disaster assessment. J Nat Disa, 2015, 24(1): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201501026.htm
|
[32] |
Zhang L J, Liu M, Lu M, et al. The hazard assessment of typhoon in southeast coastal areas of China. Yangtze River, 2010, 41(6): 81-83;91. doi: 10.3969/j.issn.1001-4179.2010.06.021
|
[33] |
Blaikie P, Cannon T, Davis I, et al. At Risk: Natural Hazard, People's Vulnerability and Disasters. London: Routledgei, 1994: 1-210.
|
[34] |
Li B N. Fuzzy Mathematics and Application. Hefei: Hefei University of Technology Press, 2007.
|
[35] |
Cai Y L, Cao S S, Du M Y, et al. Estimation and analysis of driving factors of total AHF in prefecture-level of China. J Geo-info Sci, 2021, 23(3): 405-418. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202103006.htm
|
[36] |
Lin R X, Wang X. Preliminary study about Guangdong flood disaster risk based on ArcGIS. Guangdong Water Resources and Hydropower, 2016(5): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD201605011.htm
|
[37] |
Zheng X J, Lu N M, Luo J N, et al. Analysis of the characteristics of water vapor image of rainstorm in Fujian Province on 8 August 1996. Marine Forecasts, 1997, 14(4): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB704.006.htm
|