季节 | 氧同位素组成/‰ | 氢同位素组成/‰ | 降水氘盈余/‰ | 降水量/mm |
春季 | -3.3 | -12.9 | 13.1 | 60.0 |
夏季 | -10.0 | -69.1 | 10.8 | 437.2 |
秋季 | -7.4 | -39.6 | 20.1 | 115.3 |
冬季 | -6.5 | -28.8 | 23.3 | 209.6 |
Citation: | Zhu Xuan, Xiao Wei, Wang Jingyuan, et al. Monitoring characteristics of hydrogen and oxygen isotopes in precipitation of Nanjing. J Appl Meteor Sci, 2022, 33(3): 353-363. DOI: 10.11898/1001-7313.20220309. |
Table 1 Amount-weighted isotopic compositions and the precipitation of Nanjing from Jul 2018 to Jun 2019
季节 | 氧同位素组成/‰ | 氢同位素组成/‰ | 降水氘盈余/‰ | 降水量/mm |
春季 | -3.3 | -12.9 | 13.1 | 60.0 |
夏季 | -10.0 | -69.1 | 10.8 | 437.2 |
秋季 | -7.4 | -39.6 | 20.1 | 115.3 |
冬季 | -6.5 | -28.8 | 23.3 | 209.6 |
Table 2 Isotopic compositions of different precipitation type of Nanjing from Jul 2018 to Jun 2019
类型 | 降水次数 | 降水量/mm | 平均单次降水/mm | 氧同位素组成/‰ | 氢同位素组成/‰ | 降水氘盈余/‰ |
热带气旋降水 | 4 | 218.9 | 54.7 | -10.5±0.1 | -75.4±0.5 | 8.9±0.6 |
梅雨降水 | 5 | 163.0 | 32.6 | -10.4±0.1 | -71.1±0.5 | 12.2±0.0 |
其他降水 | 43 | 432.3 | 10.0 | -6.3±0.1 | -30.6±0.3 | 19.9±0.7 |
Table 3 Tropical cyclones and precipitation isotopic compositions
名称 | 强度级别 | 中心最低气压/hPa | 降水量/mm | 氧同位素组成/‰ | 氢同位素组成/‰ | 降水氘盈余/‰ |
安比 | 强热带风暴 | 980 | 9.0 | -6.3±0.1 | -43.0±0.2 | 7.5±0.3 |
云雀 | 台风 | 955 | 25.9 | -6.7±0.1 | -40.3±0.2 | 13.4±0.8 |
摩羯 | 热带风暴 | 980 | 36.0 | -6.7±0.2 | -46.4±0.4 | 7.5±1.1 |
温比亚 | 强热带风暴 | 982 | 148.0 | -12.4±0.1 | -90.6±0.6 | 8.6±0.4 |
[1] |
Sjostrom D J, Welker J M.The influence of airmass source on the seasonal isotopic composition of precipitation, eastern USA.Journal of Geochemical Exploration, 2009, 102(3):103-112. doi: 10.1016/j.gexplo.2009.03.001
|
[2] |
Uemura R, Matsui Y, Yoshimura K, et al. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journal of Geophysical Research Atmospheres, 2008, 113(D19). DOI: 10.1029/2008JD010209.
|
[3] |
Cai Z Y, Tian L D. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. Journal of Climate, 2016, 29(4): 1339-1352. doi: 10.1175/JCLI-D-15-0363.1
|
[4] |
Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993
|
[5] |
Pfahl S, Wernli H, Yoshimura K. The isotopic composition of precipitation from a winter storm—A case study with the limited-area model COSMOiso. Atmospheric Chemistry and Physics, 2012, 12(3): 1629-1648. doi: 10.5194/acp-12-1629-2012
|
[6] |
Froehlich K, Kralik M, Papesch W, et al. D-excess in precipitation of Alpine regions-moisture recycling. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70. doi: 10.1080/10256010801887208
|
[7] |
Kong Y L, Pang Z H, Froehlich K. Quantifying recycled moisture fraction in precipitation of an arid region using D-excess. Tellus B Chemical and Physical Meteorology, 2013, 65(1): 19251. doi: 10.3402/tellusb.v65i0.19251
|
[8] |
Tang Y, Pang H, Zhang W, et al. Effects of changes in moisture source and the upstream rainout on stable isotopes in summer precipitation-a case study in Nanjing, East China. Hydrology and Earth System Sciences, 2015, 12(4): 3919-3944.
|
[9] |
Wang D, Tian L, Cai Z, et al. Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales. Earth and Planetary Science Letters, 2020, 529: 115837. doi: 10.1016/j.epsl.2019.115837
|
[10] |
Burnett A W, Mullins H T, Patterson W P. Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophysical Research Letters, 2004, 31(22): L22209.
|
[11] |
Liu Z, Yoshmura K, Bowen G J, et al. Pacific-North American teleconnection controls on precipitation isotopes (δ18O) across the contiguous United States and adjacent regions: A GCM-based analysis. Journal of Climate, 2014, 27(3): 1046-1061. doi: 10.1175/JCLI-D-13-00334.1
|
[12] |
Yamanaka T, Shimada J, Miyaoka K. Footprint analysis using event-based isotope data for identifying source area of precipitated water. Journal of Geophysical Research Atmospheres, 2002, 107(D22): 4626. DOI: 10.1029/2001JD001187.
|
[13] |
Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia. Journal of Geophysical Research Atmospheres, 1998, 103(22): 28721-28742.
|
[14] |
Laskar A H, Sharma N, Ramesh R, et al. Paleoclimate and paleovegetation of Lower Narmada Basin, Gujarat, Western India, inferred from stable carbon and oxygen isotopes. Quaternary International, 2010, 227(2): 183-189. doi: 10.1016/j.quaint.2010.05.020
|
[15] |
Masson-Delmotte V, Jouzel1 J, Landais A, et al. GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science, 2005, 309(5731): 118-121. doi: 10.1126/science.1108575
|
[16] |
Aemisegger F, Pfahl S, Sodemann H, et al. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics, 2014, 14(8): 4029-4054. doi: 10.5194/acp-14-4029-2014
|
[17] |
Lewis S C, LeGrande A N, Kelley M, et al. Modeling insights into deuterium excess as an indicator of water vapor source conditions. Journal of Geophysical Research Atmospheres, 2013, 118(2): 243-262. doi: 10.1029/2012JD017804
|
[18] |
Benetti M, Reverdin G, Pierre C, et al. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. Journal of Geophysical Research Atmospheres, 2014, 119(2): 584-593. doi: 10.1002/2013JD020535
|
[19] |
Steen-Larsen H C, Sveinbjörnsdottir A E, Peters A J, et al. Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmospheric Chemistry and Physics, 2014, 14(15): 7741-7756. doi: 10.5194/acp-14-7741-2014
|
[20] |
Stewart M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: Applications to atmospheric processes and evaporation of lakes. Journal of Geophysical Research, 1975, 80(9): 1133-1146. doi: 10.1029/JC080i009p01133
|
[21] |
Salamalikis V, Argiriou A A, Dotsika E. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Science of the Total Environment, 2016, 544: 1059-1072. doi: 10.1016/j.scitotenv.2015.11.072
|
[22] |
Peng H, Mayer B, Norman A, et al. Modelling of hydrogen and oxygen isotope compositions for local precipitation. Tellus B Chemical and Physical Meteorology, 2005, 57(4): 273-282. doi: 10.3402/tellusb.v57i4.16545
|
[23] |
Aggarwal P, Gat J, Froehlich K. Isotopes in the Water Cycle: Past, Present and Future of a Developing Science. Dordrencht: Springer, 2005.
|
[24] |
Rozanski K, Araguás-Araguás L, Gonfiantini R. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, 1993, 78: 1-36.
|
[25] |
Bedaso Z K, DeLuca N M, Levin N E, et al. Spatial and temporal variation in the isotopic composition of Ethiopian precipitation. Journal of Hydrology, 2019, 585: 124364.
|
[26] |
Zhao P, Zhou X J. Decadal variability of rainfall persistence time and rainbelt shift over eastern China in recent 40 years. Journal of Applied Meteorological Science, 2006, 17(5): 548-556. doi: 10.3969/j.issn.1001-7313.2006.05.004
|
[27] |
Zhang Q, Xu C Y, Zhang Z, et al. Spatial and temporal variability of precipitation over China, 1951-2005. Theoretical Applied Climatology, 2009, 95(1/2): 53-68.
|
[28] |
Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. Journal of Applied Meteorological Science, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111
|
[29] |
Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. Journal of Applied Meteorological Science, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304
|
[30] |
He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. Journal of Applied Meteorological Science, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|
[31] |
Gou J, Qu S, Shi P, et al. Application of stable isotope tracer to study runoff generation during different types of rainfall events. Water, 2018, 10(5): 538. doi: 10.3390/w10050538
|
[32] |
Qu S, Chen X, Wang Y, et al. Isotopic characteristics of precipitation and origin of moisture sources in Hemuqiao Catchment, a small watershed in the lower reach of Yangtze River. Water, 2018, 10(5): 1170.
|
[33] |
Hu Y B, Xiao W, Qian Y F, et al. Effects of water vapor source and local evaporation on the stable hydrogen and oxygen isotopic compositions of precipitation. Environmental Science, 2019, 40(2): 573-581. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902009.htm
|
[34] |
Lin G H. Stable Isotope Ecology. Beijing: China Higher Education Press, 2013: 125-129.
|
[35] |
Zhang X P, Guan H D, Zhang X Z, et al. Simulation of δ18O in atmospheric vapor and precipitation in Changsha Station, East Asian monsoon regions. Journal of Glaciology and Geocryology, 2015, 37(1): 249-257. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501028.htm
|
[36] |
Sui M Z, Gao D Q, Xu Q, et al. Characteristics of hydrogen and oxygen isotopes in precipitation and moisture sources in Gaoyou, Jiangsu Province, China. Chinese Journal of Applied Ecology, 2019, 30(6): 1823-1832.
|
[37] |
Zhang B B, Xu Q, Jiang C W. Characteristics of δD and δ18O in the precipitation and evaporation sources in Anqing. Scientia Silvae Sinicae, 2017, 53(12): 20-29. doi: 10.11707/j.1001-7488.20171203
|
[38] |
Wu H, Li X, Zhang J, et al. Stable isotopes of atmospheric water vapor and precipitation in the northeast Qinghai-Tibetan Plateau. Hydrological Processes, 2019, 33: 2997-3009. doi: 10.1002/hyp.13541
|
[39] |
Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. Journal of Applied Meteorological Science, 2021, 32(3): 289-301. doi: 10.11898/1001-7313.20210303
|
[40] |
Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. Journal of Applied Meteorological Science, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606
|
[41] |
Huang Y M, Zhao R M, Song X F, et al. Precipitation isotopes formed by Typhoon "Haima" in the Dongting Lake Basin. Scientia Geographica Sinica, 2019, 39(7): 1184-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201907017.htm
|
[42] |
Tan G R, Fan Y Y, Niu R Y. Pattern classification of heavy rainfall in Jianghuai Region and associated circulations. Journal of Applied Meteorological Science, 2018, 29(4): 396-409. doi: 10.11898/1001-7313.20180402
|
[43] |
Chen L J, Gu W Z, Bo Z K, et al. The statistical downscaling method of summer rainfall prediction over the Huang-Huai Valley. Journal of Applied Meteorological Science, 2017, 28(2): 129-141. doi: 10.11898/1001-7313.20170201
|
[44] |
Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301. doi: 10.1175/JTECH-D-12-00119.1
|
[45] |
Lu X Q, H Yu, M Ying, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Advances in Atmospheric Sciences, 2021, 38(4): 690-699. doi: 10.1007/s00376-020-0211-7
|
[46] |
Chen Y T, Du W J, Chen J S. Composition of hydrogen and oxygen isotopic of precipitation and source apportionment of water vapor in Xiamen Area. Acta Scientiae Circumstantiae, 2016, 36(2): 667-674. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201602039.htm
|
[47] |
Liu J, Song X, Yuan G, et al. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources. Chinese Science Bulletin, 2010, 55: 200-211. doi: 10.1007/s11434-009-0202-7
|
[48] |
Froehlich K, Gibson J J, Aggarwal P. Deuterium Excess in Precipitation and Its Climatological Significance. International Conference on Study of Environmental Change Using Isotope Techniques, 2001.
|
[49] |
Wang T, Zhang J R, Liu X, et al. Analysis of oxygen isotope variation and water vapor source of atmospheric precipitation in Nanjing. Journal of China Hydrology, 2013, 33(4): 25-31. doi: 10.3969/j.issn.1000-0852.2013.04.005
|
[50] |
Merlivat L, Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research, 1979, 84(C8): 5029-5033. doi: 10.1029/JC084iC08p05029
|
[51] |
Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 225-262. doi: 10.1146/annurev.earth.24.1.225
|
[52] |
Zheng S H, Hou F G, Ni B L. Study on hydrogen and oxygen isotopes of atmospheric precipitation in China. Scientific Bulletin, 1983, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm
|
[53] |
Li Z, Feng Q, Wang Q J, et al. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China. Global and Planetary Change, 2016, 146: 140-151. doi: 10.1016/j.gloplacha.2016.10.003
|
[54] |
Chen B L, Chen S Y, Hu Q F, et al. Study on the regularity of Meiyu and Typhoon in Taihu Lake Basin of Jiangsu Province. Jiangsu Water Resources, 2019(2): 11-14;20. https://www.cnki.com.cn/Article/CJFDTOTAL-LSSL201902003.htm
|
[55] |
Xie A, Mao J Y, Song Y Y, et al. Climatological characteristics of moisture transport over Yangtze River Basin. Journal of Applied Meteorological Science, 2002, 13(1): 67-77. doi: 10.3969/j.issn.1001-7313.2002.01.008
|
[56] |
Gao Z J, Yu C, Tian Y, et al. Slope zoning of atmospheric precipitation line and its water vapor source in mainland China. Ground Water, 2017, 39(6): 149-152. doi: 10.3969/j.issn.1004-1184.2017.06.054
|