Diao Xiuguang, Li Fang, Wan Fujing. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. DOI:  10.11898/1001-7313.20220403.
Citation: Diao Xiuguang, Li Fang, Wan Fujing. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. DOI:  10.11898/1001-7313.20220403.

Comparative Analysis on Dual Polarization Features of Two Severe Hail Supercells

DOI: 10.11898/1001-7313.20220403
  • Received Date: 2022-03-21
  • Rev Recd Date: 2022-05-27
  • Publish Date: 2022-07-13
  • Using S-band dual-polarization weather radar data, sounding and ground meteorological observations, and disaster investigation reports, the similarity and difference of dual polarization parameters between Lixian and Zhangqiu supercells with hails above 50 mm are analyzed. Lixian supercell occurred at Lixian, Heibei Province on 25 June 2020, and Zhangqiu supercell occurred at Zhangqiu, Shandong Province on 9 July 2021. The results show that two supercells occurred in similar weather pattern (northwest flow) and large vertical wind shear environmental conditions which is conducive to the generation and maintenance of supercell storms, but Zhangqiu supercell is with stronger convective effective potential energy, larger humidity, and higher wet bulb 0℃ layer height. The main similarities include obvious differential reflectivity (ZDR) arcs along the forward flank of supercell storms, ZDR rings distributed around the updraft in the middle layer, and obvious ZDR columns and specific differential phase (KDP) columns above the 0℃ level. ZDR arcs are associated with large raindrops or small melting hail particles, ZDR columns mark the location of convective updrafts as large raindrops or wet ice particles are lofted to subfreezing temperatures, and KDP columns are dominated by large concentrations of small and medium-sized raindrops or melting ice particles. The similarity of the updraft structure plays a key role in the commonness or similarity of the polarization characteristics. The main differences are stronger reflectivity factor ZH, but lower height of ZDR column and KDP column in Lixian supercell. The strong overhang echo above the weak echo area in Lixian supercell contains large hail particles generated by cumulated growth. After the overhanging large hail particles enters the descending channel, they will produce obvious growth again and become more irregular, resulting in stronger horizontal polarization reflectivity factor ZH and smaller correlation coefficient. The obvious differential attenuation signature and nonuniform beam filling are observed in low level of Lixian supercell. The differential attenuation caused a decrease in the differential reflectivity as the beam propagates through large hail cores. Nonuniform beam filling is generated by inhomogeneous filling of different hydrometeor particles in the sampling volume. Under similar weather patterns, the distribution characteristic of humidity vertical profile is one of the key environmental factors of storm intensity. Lixian supercell storm occured in very low humidity vertical distribution environment, while Zhangqiu supercell storm occured in wetter environment.
  • Fig. 1  Observed precipitation(the value, unit:mm) and strong wind(the barb)

    (a)from 1700 BT to 1900 BT on 25 Jun 2020, (b) from 1400 BT to 1600 BT on 9 Jul 2021

    Fig. 2  Geopotential height(the black solid line, unit:dagpm), temperature(the red dashed line, unit:℃) and wind(the barb) at 0800 BT 25 Jun 2020 and 0800 BT 9 Jul 2021

    Fig. 3  Horizontal polarization reflectivity, base velocity, differential reflectivity, specific differential phase and correlation coefficient with different elevation from Shijiazhuang radar at 1812 BT 25 Jun 2020

    (the white cycle denotes mesocyclone)

    Fig. 4  Cross-sections of horizontal polarization reflectivity, differential reflectivity, specific differential phase and correlation coefficient along 74° radial direction from Shijiazhuang radar at 1812 BT 25 Jun 2020

    (pink, red, white and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer, -10℃ layer and-20℃ layer, respectively)

    Fig. 5  Horizontal polarization reflectivity, base velocity, differential reflectivity, specific differential phase and correlation coefficient with different elevation from Jinan radar at 1436 BT 9 Jul 2021

    (the white cycle denotes mesocyclone, the black arrow denotes the moving direction of supercell)

    Fig. 6  Cross-sections of horizontal polarization reflectivity, differential reflectivity, specific differential phase and correlation coefficient along 90° radial direction from Jinan radar at 1436 BT 9 Jul 2021

    (pink, red, white and blue horizontal solid lines denote heights of the wet bulb 0℃ layer, 0℃ layer, -10℃ layer and-20℃ layer, respectively)

    Table  1  Environmental physical parameters obtained by sounding of Xingtai and Zhangqiu

    物理量 邢台
    2020-06-25T08:00
    章丘
    2021-07-09T08:00
    K指数/℃ 11 30
    850 hPa和500 hPa的温差/℃ 29.6 29.3
    抬升指数/℃ -1.7 -6.3
    对流有效位能/(J·kg-1) 430(2400*) 2330(4550*)
    对流抑制能量/(J·kg-1) 470 0
    整层比湿积分/(g·kg-1) 2115 3206
    0~6 km风切变/(m·s-1) 16.4 19.5
    0~3 km风切变/(m·s-1) 10.6 16.6
    500 hPa风速/(m·s-1) 15 11
    500 hPa气温/℃ -11 -9
    注:*表示订正后的对流有效位能。
    DownLoad: Download CSV

    Table  2  Averaged values of storm parameters of supercells at Lixian and Zhangqiu

    参数 蠡县强风暴 章丘强风暴
    最大反射率因子/dBZ 77.1 65.6
    最大反射率因子所在高度/km 5.1(-5℃高度) 4.6(-3℃高度)
    风暴顶高/km 9.5(12.4*) 12.8(-47℃高度)
    基于单体的垂直积分液态水含量/(kg·m-2) 68.0 86.3
    差分反射率柱高度/km 8.0(-24℃高度) 11.4(-48℃高度)
    比差分相移柱高度/km 7.7(-22℃高度) 9.0(-32℃高度)
    最大旋转速度/(m·s-1) 19.4 20.2
    最大旋转速度所在高度/km 5.8 5.1
    风暴顶辐散强度/(m·s-1) 58.0 60.3
    注:*表示沧州雷达探测到的蠡县超级单体风暴顶高度。
    DownLoad: Download CSV
  • [1]
    Brande E A, Vivekanandan J, Tuttle J D, et al. A study of thunderstorm microphysics with multiparameter radar and aircraft observations.Mon Wea Rev, 1995, 123(11):3129-3143. doi:  10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2
    [2]
    McCaul E W Jr, Weisman M L. The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon Wea Rev, 2001, 129(4): 664-687. doi:  10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2
    [3]
    Beatty K, Rasmussen E N, Straka J M. The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron J Severe Storms Meteor, 2008, 3(4): 1-21.
    [4]
    Broeke V D, Matthew S. Effects of mid- and upper-level drying on microphysics of simulated supercell storms. Electron J Severe Storms Meteor, 2014, 9(3): 1-29.
    [5]
    Davenport C E, Parker M D. Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon Wea Rev, 2015, 143(10): 4244-4277. doi:  10.1175/MWR-D-15-0072.1
    [6]
    Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge: Cambridge University Press, 2001.
    [7]
    Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi:  10.1175/2007JAMC1874.1
    [8]
    Kumjian M R. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J Operational Meteor, 2013, 1(19): 226-242. doi:  10.15191/nwajom.2013.0119
    [9]
    Herzegh P, Jameson A R. Observing precipitation through dual-polarization radar measurements. Bull Amer Meteor Soc, 1992, 73(9): 1365-1374. doi:  10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2
    [10]
    Conway J W, Zrnic D S. A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon Wea Rev, 1993, 121(9): 2511-2528. doi:  10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2
    [11]
    Ryzhkov A V, Zhuravlyov V B, Rybakova N A. Preliminary results of X-band polarization radar studies of clouds and precipitation. J Atmos Oceanic Technol, 1994, 11(1): 132-139. doi:  10.1175/1520-0426(1994)011<0132:PROXBP>2.0.CO;2
    [12]
    Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786. doi:  10.1175/2010MWR3322.1
    [13]
    Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490. doi:  10.1175/JAS-D-12-067.1
    [14]
    Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060. doi:  10.1175/JAS-D-11-0125.1
    [15]
    Dawson D T, Mansell E R, Jung Y, et al. Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J Atmos Sci, 2014, 71(1): 276-299. doi:  10.1175/JAS-D-13-0118.1
    [16]
    Dawson D T, Mansell E R, Kumjian M R. Does wind shear cause hydrometeor size sorting?. J Atmos Sci, 2015, 72(1): 340-348. doi:  10.1175/JAS-D-14-0084.1
    [17]
    Broeke V D, Matthew S. Polarimetric variability of classic supercell storms as a function of environment. J Appl Meteor Climatol, 2016, 55(9): 1907-1925. doi:  10.1175/JAMC-D-15-0346.1
    [18]
    Bringi V N, Liu L, Kennedy P C, et al. Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor Atmos Phys, 1996, 59(1): 3-31.
    [19]
    Hubbert J C, Carey L D, Bolen S. CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J Appl Meteor, 1998, 37(8): 749-775. doi:  10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2
    [20]
    Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194. doi:  10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2
    [21]
    Romine G S, Burgess D W, Wilhelmson R B. A dual-polarization-radarbased assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon Wea Rev, 2008, 136(8): 2849-2870. doi:  10.1175/2008MWR2330.1
    [22]
    Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅱ: Warm- and cold-season applications. J Operational Meteor, 2013, 1(20): 243-264. doi:  10.15191/nwajom.2013.0120
    [23]
    Wang H, Wu N G, Wan Q L, et al. Analysis of S-band polarimetric radar observations of a hailproducing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm
    [24]
    Pan J W, Wei M, Guo L J, et al. Dual-polarization radar characteristic analysis of the evolution of heavy hail supercell in Southern Fujian. Meteor Mon, 2020, 46(12): 1608-1620. doi:  10.7519/j.issn.1000-0526.2020.12.008
    [25]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [26]
    Gao L, Pan J W, Jiang L L, et al. Analysis of evolution mechanism and characteristics of dual polarization radar echo of a hail caused by long life supercell. Meteor Mon, 2021, 47(2): 170-182. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102004.htm
    [27]
    He X L, Yang T, Li G, et al. Dual-polarization characteristics analysis of a supercell in Northern Hubei. Meteor Sci Technol, 2021, 49(6): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202106012.htm
    [28]
    Diao X G, Guo F Y. Analysis of polarimetric signatures in the supercell thunderstorm occurred in Zhucheng on 16 August 2019. Acta Meteor Sinica, 2021, 79(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102001.htm
    [29]
    Diao X G, Yang C F, Zhang Q, et al. Analysis on the evolution characteristics of storm parameters and ZDR column for two long life supercells. Plateau Meteor, 2021, 40(3): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202103011.htm
    [30]
    Balakrishnan N, Zrnic D S. Use of polarization to characterize precipitation and discriminate large hail. J Atmos Sci, 47(13): 1525-1540. doi:  10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2
    [31]
    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [32]
    Yang L, He H B, Yang B, et al. Identification of hydrometeors based on S-band dual-polarimetric radar measurement. J Meteor Environ, 2019, 35(4): 127-132. doi:  10.3969/j.issn.1673-503X.2019.04.018
    [33]
    Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206
    [34]
    Pan J W, Gao L, Wei M, et al. Analysis of the polarimetric characteristics of hail storm from S band dual polarization radar observations. Acta Meteor Sinica, 2021, 79(1): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101012.htm
    [35]
    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [36]
    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [37]
    Zheng Y G, Tao Z Y, Yu X D. Some essential issues of severe convective weather forecasting. Meteor Month, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htm
    [38]
    Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505
    [39]
    Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210
    [40]
    Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅲ: Artifacts. J Operational Meteor, 2013, 1(21): 265-274. doi:  10.15191/nwajom.2013.0121
    [41]
    Diao X G. Dual-polarization characteristics of severe hail storms in Shandong on 17 May and 1 June 2020. J Marine Meteor, 2021, 41(1): 68-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202101007.htm
    [42]
    Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205
    [43]
    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (1272) PDF downloads(204) Cited by()
    • Received : 2022-03-21
    • Accepted : 2022-05-27
    • Published : 2022-07-13

    /

    DownLoad:  Full-Size Img  PowerPoint