[1]
|
|
[2]
|
McCaul E W Jr, Weisman M L. The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon Wea Rev, 2001, 129(4): 664-687. doi: 10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2
|
[3]
|
Beatty K, Rasmussen E N, Straka J M. The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron J Severe Storms Meteor, 2008, 3(4): 1-21.
|
[4]
|
Broeke V D, Matthew S. Effects of mid- and upper-level drying on microphysics of simulated supercell storms. Electron J Severe Storms Meteor, 2014, 9(3): 1-29.
|
[5]
|
Davenport C E, Parker M D. Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon Wea Rev, 2015, 143(10): 4244-4277. doi: 10.1175/MWR-D-15-0072.1
|
[6]
|
Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge: Cambridge University Press, 2001.
|
[7]
|
Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi: 10.1175/2007JAMC1874.1
|
[8]
|
Kumjian M R. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J Operational Meteor, 2013, 1(19): 226-242. doi: 10.15191/nwajom.2013.0119
|
[9]
|
|
[10]
|
|
[11]
|
|
[12]
|
Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786. doi: 10.1175/2010MWR3322.1
|
[13]
|
Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490. doi: 10.1175/JAS-D-12-067.1
|
[14]
|
Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060. doi: 10.1175/JAS-D-11-0125.1
|
[15]
|
Dawson D T, Mansell E R, Jung Y, et al. Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J Atmos Sci, 2014, 71(1): 276-299. doi: 10.1175/JAS-D-13-0118.1
|
[16]
|
Dawson D T, Mansell E R, Kumjian M R. Does wind shear cause hydrometeor size sorting?. J Atmos Sci, 2015, 72(1): 340-348. doi: 10.1175/JAS-D-14-0084.1
|
[17]
|
Broeke V D, Matthew S. Polarimetric variability of classic supercell storms as a function of environment. J Appl Meteor Climatol, 2016, 55(9): 1907-1925. doi: 10.1175/JAMC-D-15-0346.1
|
[18]
|
Bringi V N, Liu L, Kennedy P C, et al. Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor Atmos Phys, 1996, 59(1): 3-31.
|
[19]
|
|
[20]
|
|
[21]
|
Romine G S, Burgess D W, Wilhelmson R B. A dual-polarization-radarbased assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon Wea Rev, 2008, 136(8): 2849-2870. doi: 10.1175/2008MWR2330.1
|
[22]
|
Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅱ: Warm- and cold-season applications. J Operational Meteor, 2013, 1(20): 243-264. doi: 10.15191/nwajom.2013.0120
|
[23]
|
|
[24]
|
Pan J W, Wei M, Guo L J, et al. Dual-polarization radar characteristic analysis of the evolution of heavy hail supercell in Southern Fujian. Meteor Mon, 2020, 46(12): 1608-1620. doi: 10.7519/j.issn.1000-0526.2020.12.008
|
[25]
|
Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606
|
[26]
|
|
[27]
|
|
[28]
|
|
[29]
|
|
[30]
|
|
[31]
|
Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[32]
|
Yang L, He H B, Yang B, et al. Identification of hydrometeors based on S-band dual-polarimetric radar measurement. J Meteor Environ, 2019, 35(4): 127-132. doi: 10.3969/j.issn.1673-503X.2019.04.018
|
[33]
|
Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi: 10.11898/1001-7313.20210206
|
[34]
|
|
[35]
|
Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309
|
[36]
|
Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102
|
[37]
|
|
[38]
|
Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505
|
[39]
|
Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210
|
[40]
|
Kumjian M R. Principles and applications of dual-polarization weather radar. Part Ⅲ: Artifacts. J Operational Meteor, 2013, 1(21): 265-274. doi: 10.15191/nwajom.2013.0121
|
[41]
|
|
[42]
|
Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi: 10.11898/1001-7313.20220205
|
[43]
|
Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602
|