Chen Shaojie, Zheng Jiafeng, Yang Ji, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. DOI:  10.11898/1001-7313.20220404.
Citation: Chen Shaojie, Zheng Jiafeng, Yang Ji, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. DOI:  10.11898/1001-7313.20220404.

Retrieval of Air Vertical Velocity and Droplet Size Distribution in Squall Line Precipitation Using C-FMCW Radar

DOI: 10.11898/1001-7313.20220404
  • Received Date: 2022-03-28
  • Rev Recd Date: 2022-05-12
  • Publish Date: 2022-07-13
  • The zenith C-band frequency modulation continuous wave(C-FMCW) radar has good detection capability with high temporary-spatial resolution and large dynamic range. The Doppler spectral density data of two squall lines precipitation cases at Longmen of Guangdong are utilized to retrieve the air vertical velocity (Va) in clouds and droplet size distribution (DSD). The empirical relation method (checking relationship between mean particle falling velocity (Vt) and reflectivity factor) and the small-particle-trace method are explored to retrieve the air vertical velocity in clouds. And then the droplet size distribution is retrieved from the translated Doppler spectral density by a velocity-diameter relation. The retrieved DSD of two squall lines are then compared and validated with the observation of K-band micro rain radar and second-generation Parsivel disdrometer. The retrieved Va by the empirical relation method is slightly smaller for strong monomer than that by the small-particle-trace method and slightly larger for weak convective precipitation, but Vt is the opposite. The absolute value of Vt negative velocity by the empirical relation method and the small-particle-trace method corresponds to the moment of large particles and heavy rain observed by Parsivel disdrometer, indicating that Va of two methods is basically reliable. The comparison in DSD retrieval show that the number of small droplets observed by radar is higher, but Parsivel disdrometer may underestimate it. The results of the empirical relation method are closer to micro rain radar and Parsivel disdrometer when rain rate is below 1 mm·h-1. The medium droplets obtained by radar retrieval are consistent with Parsivel disdrometer measurements, but the concentration of large droplets is low when rain rate is stronger than 10 mm·h-1. The retrieval results of both methods are close to Parsivel disdrometer and micro rain radar when rain rate is between 1 mm·h-1 and 10 mm·h-1. The strong convection makes droplets rupture severer in the peak area of heavy precipitation in the squall line, resulting in smaller mass-weighted mean diameter (Dm) and larger generalized intercept parameter Nw of the empirical relation method and the small-particle-trace method retrieval. For weak convective precipitation at the back of the squall line, the value of empirical relation method is quite close to Parsivel disdrometer. Under different rain rate, μ value of C-FMCW radar is less than 10 and the fluctuation is smaller, indicating that the results of C-FMCW radar is even more reliable than Parsivel disdrometer and micro rain radar.
  • Fig. 1  Weak convective precipitation after the squall line passing on 15 May 2016

    (a)C-FMCW reflectivity factor(Ze), (b)air vertical velocity(Va) retrieved by the empirical relation method, (c)air vertical velocity retrieved(Va) by the small-particle-trace method, (d)mean particle falling velocity(Vt) retrieved by the empirical relation method, (e)mean particle falling velocity(Vt) retrieved by the small-particle-trace method, (f)droplet size distribution and rain rate(R) measured by disdrometer

    Fig. 2  Mean droplet size distribution under three rain rate conditions on 15 May 2016

    (a)0<R≤0.2 mm·h-1, (b)0.2<R≤1 mm·h-1, (c)R>1 mm·h-1

    Fig. 3  Comparison of physical parameters for three instruments from 1943 BT to 2120 BT on 15 May 2016

    Fig. 4  Strong convective precipitation of the squall line passing on 6 May 2016

    (a)C-FMCW reflectivity factor(Ze), (b)air vertical velocity(Va) retrieved by the empirical relation method, (c)air vertical velocity(Va) retrieved by the small-particle-trace method, (d)mean particle falling velocity(Vt) retrieved by the empirical relation method, (e)mean particle falling velocity(Vt) retrieved by the small-particle-trace method, (f)droplet size distribution and rain rate(R) measured by disdrometer

    Fig. 5  Mean droplet size distribution under three rain rate conditions on 6 May 2016

    (a)0<R≤1 mm·h-1, (b)1<R≤10 mm·h-1, (c)R>10 mm·h-1

    Fig. 6  Comparison of physical parameters for three instruments from 1800 BT to 2141 BT on 6 May 2016

  • [1]
    Waldteufel P, Corbin H. On the analysis of single-Doppler radar data.J Appl Meteor Climatol,1979,18(4):532-542. doi:  10.1175/1520-0450(1979)018<0532:OTAOSD>2.0.CO;2
    [2]
    Li Y, Ma S Q, Yang L, et al. Wind field verification for array weather radar at Changsha Airport. J Appl Meteor Sci, 2020, 31(6): 681-693. doi:  10.11898/1001-7313.20200604
    [3]
    Guan L, Dai J H, Tao L, et al. Application of QVP method to winter precipitation observation. J Appl Meteor Sci, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108
    [4]
    Lin X M, Wei Y H, Chen H, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. doi:  10.11898/1001-7313.20200310
    [5]
    Stokes G M, Schwartz S E. The Atmospheric Radiation Measurement(ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull Amer Meteor Soc, 1994, 75(7): 1201-1222. doi:  10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2
    [6]
    Ruan Z. Microphysical Characteristics and Vertical Structure of Precipitation from Radar Observations. Nanjing: Nanjing University of Information Science & Technology, 2015.
    [7]
    Gossard E E, Strauch R O, Rogers R R. Evolution of dropsize distributions in liquid precipitation observed by ground-based Doppler radar. J Atmos Ocean Technol, 1990, 7(6): 815-828. doi:  10.1175/1520-0426(1990)007<0815:EODDIL>2.0.CO;2
    [8]
    Shupe M D, Intrieri J M. Cloud radiative forcing of the arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J Climate, 2004, 17(3): 616-628. doi:  10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
    [9]
    Zheng J F, Liu L P, Zhu K Y, et al. A method for retrieving vertical air velocities in convective clouds over the Tibetan Plateau from TIPEX-III cloud radar Doppler spectra. Remote Sensing, 2017, 9(9): 964. doi:  10.3390/rs9090964
    [10]
    Cui Y, Ruan Z, Wei M, et al. Vertical structure and dynamical properties during snow events in middle latitudes of China from observations by the C-band vertically pointing radar. J Meteor Soc Japan Ser II, 2020, 98(3): 527-550. doi:  10.2151/jmsj.2020-028
    [11]
    Ma N K, Liu L P, Chen Y C, et al. Analysis of the vertical air motions and raindrop size distribution retrievals of a squall line based on cloud radar Doppler spectral density data. Atmosphere, 2021, 12(3): 348. doi:  10.3390/atmos12030348
    [12]
    Huo Z Y. The Vertical Structural of Precipitation Cloud and Microphysics of Precipitation in South China Summer Based on the VPR-CFMCW. Nanjing: Nanjing University of Information Science & Technology, 2019.
    [13]
    Jin L, Ruan Z, Ge R S, et al. Bright band analysis in Yangtze-Huaihe Region of Anhui using data detection from C-FMCW radar. J Appl Meteor Sci, 2016, 27(3): 312-322. doi:  10.11898/1001-7313.20160306
    [14]
    Ruan Z, Jin L, Ge R S, et al. The C-band FMCW pointing weather radar system and its observation experiment. Acta Meteor Sinica, 2015, 73(3): 577-592. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503014.htm
    [15]
    Song C, Zhou Y Q, Wu Z H, et al. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408
    [16]
    Peters G, Fischer B, Andersson T. Rain observations with a vertically looking micro rain radar(MRR). Boreal Environment Research, 2002, 7(4): 353-362.
    [17]
    Loöffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Ocean Technol, 2000, 17(2): 130-139. doi:  10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
    [18]
    Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307
    [19]
    Monique P, Amadou S, Garrouste A, et al. Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers. Radio Science, 1997, 32(3): 1229-1247. doi:  10.1029/97RS00250
    [20]
    Zheng J F. Doppler Spectral Data Proccessing Methods of Ka-band Multi-mode mm-wave Radar and Air Vertical Speed Retrieval in Clouds. Nanjing: Nanjing University of Information Science & Technology, 2016.
    [21]
    Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air. J Atmos Sci, 1949, 6(4): 243-248.
    [22]
    Foote G B, Du Toit P S. Terminal velocity of raindrops aloft. J Appl Meteor, 1969, 8(2): 249-253. doi:  10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
    [23]
    Ma N K. Application of Doppler Spectral Density Data in Vertical Air Motions and Drop Size Distribution Retrieval in Cloud and Precipitation by Ka-band. Beijing: Chinese Academy of Meteorological Sciences, 2019.
    [24]
    Dong J Y, Cui Y, Ruan Z, et al. Retrieval and experiments of atmospheric vertical motions in convective precipitation clouds. J Appl Meteor Sci, 2022, 33(2): 167-179. doi:  10.11898/1001-7313.20220204
    [25]
    Jin Q, Yuan Y, Ji L, et al. Characteristics of raindrop size distribution for a squall line at Chuzhou of Anhui during summer. J Appl Meteor Sci, 2015, 26(6): 725-734. doi:  10.11898/1001-7313.20150609
    [26]
    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (1142) PDF downloads(87) Cited by()
    • Received : 2022-03-28
    • Accepted : 2022-05-12
    • Published : 2022-07-13

    /

    DownLoad:  Full-Size Img  PowerPoint