Wang Yufei, Qi Yanbin, Li Qian, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. DOI:  10.11898/1001-7313.20220405.
Citation: Wang Yufei, Qi Yanbin, Li Qian, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. DOI:  10.11898/1001-7313.20220405.

Macro and Micro Characteristics of a Fog Process in Changbai Mountain in Summer

DOI: 10.11898/1001-7313.20220405
  • Received Date: 2022-03-11
  • Rev Recd Date: 2022-05-24
  • Publish Date: 2022-07-13
  • In the summer of 2021, the fog droplet spectrum observation is carried out on the main peak of Changbai Mountain for the first time. From 31 July to 1 August, there is a fog process that lasts for 19 hours, and the minimum visibility in the extremely dense fog stage is less than 100 m. Using the observations of laser fog droplet spectrometer, combined with the ground automatic weather station, GPS balloon sounding, Himawari-8 satellite and ERA5 data, the macro and micro physical characteristics of the fog are studied, the causes of the fog are discussed, and the microphysical characteristics evolutions of the extremely dense fog period are analyzed.The results show that the fog process lasts for a long duration with occasional short dissipation, and during the process the ambient wind speed is high, the visibility is low, the number concentration of the droplets is low, with small effective diameter and low liquid water content. The wind speed is always high in the period of extremely dense fog, which is significantly different from that of plain fog. In the early stage the fog is arisen from windward slope, which is a typical topographical cloud and fog on the main peak of Changbai Mountain in summer. It is formed by the continuous southwest warm and humid airflow climbing along the terrain under the condition of stable temperature inversion stratification. While the latter process of the fog is generated by the advection to the main peak of Changbai Mountain. The temporary dissipation of fog is related to the intensity and movement of the jet core at 700 hPa. The average effective diameter of fog droplets is 5.7 μm, the average number concentration is 246.4 cm-3, and the average liquid water content is 0.05 g·cm-3. The microphysical characteristics are similar to those of sea fog.For the extremely dense fog, the minimum visibility is less than 100 m. The extremely dense fog is characterized by explosive enhancement. Due to the rapid expansion of the droplets through the turbulent collision process, a single peak structure is formed. The peak diameter of the droplet particles is 6.0 μm, which has a significant contribution to the formation of the summer fog on the main peak of Changbai Mountain. In the formation, development and weakening stages of the extremely dense fog, the changes of droplet number concentration, liquid water content and effective diameter have a good corresponding relationship, but it is not obvious in the mature stage.
  • Fig. 1  Temperature(the red solid line, unit:℃), wind(the vector) and full wind speed above 12 m·s-1(the shaded) at 700 hPa from 31 Jul to 1 Aug in 2021

    Fig. 2  Vertical distribution of temperature and relative humidity at Tianchi Weather Station of Changbai Mountain from 31 Jul to 1 Aug in 2021

    Fig. 3  Vertical distribution of temperature and relative humidity at Linjiang Station from 31 Jul to 1 Aug in 2021

    Fig. 4  High-resolution natural color composite cloud images of the Himawari-8 Satellite at 1300 BT and 1700 BT on 31 Jul 2021(△ denotes the location of fog droplet spectrometer)

    Fig. 5  Evolution of physical quantities from 31 Jul to 1 Aug in 2021

    Fig. 6  Droplet spectral distribution from 31 Jul to 1 Aug in 2021

    Fig. 7  Droplet spectrum distribution from 1209 BT to 1659 BT on 31 Jul 2021

    Table  1  Statistics of physical quantities in fog process

    时段 统计量 气温/℃ 数浓度/cm-3 液态水含量/(g·cm-3) 有效直径/μm
    最小值 10.1 0.14 5.94×10-7 2.0
    全过程 最大值 13.5 1261.7 0.65 34.0
    平均值 11.8 246.4 0.05 5.7
    最小值 11.0 0.1 5.94×10-7 2.0
    子过程1 最大值 13.5 1261.7 0.65 34.0
    平均值 12.5 477.1 0.10 7.1
    最小值 10.1 0.1 5.94×10-7 2.0
    子过程2 最大值 12.1 296.6 0.08 20.4
    平均值 11.2 35.3 0.20×10-2 4.5
    DownLoad: Download CSV

    Table  2  Comparison of microphysical characteristics of fog on the main peak of Changbai Mountain and other areas

    地点 海拔/m 时间 数浓度平均值/cm-3 有效直径平均值/μm 峰值直径/μm 液态水含量平均值/(g·cm-3)
    长白山主峰 2623 2021-07-31—08-01 246.4 5.7 4.0 0.05
    南岭大瑶山[18] 815 1998-12—1991-01
    2001-02—03
    167.8 8.4 4.0 0.16
    衡山[17] 1266 1962-05 359.3 12.1 8.0 0.40
    庐山[13] 1500 1962-07—08 453.5 15.2 10.0 0.86
    泰山[17] 1100 1981-02—04 395.5 11.7 9.0 0.66
    济南[33] 2017-01-03—06 35.9 5.8 0.65×10-2
    安徽寿县[34] 2019-01-07—08;2019-01-11—13 195.6 5.9 0.09
    南京[35] 2006-12-24—27 488.7 5.8 0.35
    厦门翔安[36] 2019-04-07 100.0 0.17
    DownLoad: Download CSV

    Table  3  Evolution of physical quantities during extremely dense fog from 1209 BT to 1659 BT on 31 Jul 2021

    物理量 形成阶段
    12:09—12:32
    发展阶段
    12:32—13:45
    成熟阶段
    13:45—16:00
    减弱阶段
    16:00—16:59
    气温/℃ 13.4
    (13.3~13.5)
    13.1
    (13.0~13.4)
    13.0
    (12.8~13.2)
    12.7
    (12.3~12.9)
    数浓度/cm-3 482.7
    (0.2~1125.2)
    712.6
    (253.6~1228.6)
    655.4
    (6.2~1261.7)
    405.6
    (0.173~1095.9)
    液态水含量/(g·cm-3) 0.09
    (5.97×10-6~0.46)
    0.20
    (0.03~0.65)
    0.14
    (2.00×10-4~0.53)
    0.10
    (2.45×10-6~0.44)
    有效直径/μm 7.5
    (3.6~22.5)
    9.2
    (6.3~12.4)
    8.0
    (4.4~10.5)
    7.6
    (3.0~34.0)
    注:括号内数据表示不同阶段各物理量变化范围。
    DownLoad: Download CSV
  • [1]
    Liang A M, Zhang Q H, Shen H X, et al. The analysis and simulation of an advection fog event in Beijing. J Appl Meteor Sci, 2009, 20(5): 612-621. doi:  10.3969/j.issn.1001-7313.2009.05.013
    [2]
    Yan W L, Liu D Y, Pu M J, et al. Formation and structure characteristics of precipitation fog in Nanjing. Meteor Mon, 2010, 36(10): 29-36. doi:  10.7519/j.issn.1000-0526.2010.10.005
    [3]
    Guo L J, Guo X L. The type, vertical structure and physical formation mechanism of persistent heavy fog events during 2009-2013 in the Beijing region. Chinese J Atmos Sci, 2016, 40(2): 296-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201602006.htm
    [4]
    Liang J, Zhang S J, Sui H Q, et al. Characteristics of heavy fog in Dalian. J Appl Meteor Sci, 2009, 20(1): 28-35. doi:  10.3969/j.issn.1001-7313.2009.01.004
    [5]
    Li Y P, Liu X B, Ge W Q, et al. A fog nowcast method based on satellite remote sensing and numerical products from meso-scale atmospheric model. J Appl Meteor Sci, 2012, 23(3): 340-347. doi:  10.3969/j.issn.1001-7313.2012.03.010
    [6]
    Li Z H, Liu D Y, Yang J. The microphysical processes and macroscopic conditions of the radiation fog droplet spectrum broadening. Chinese J Atmos Sci, 2011, 35(1): 41-54. doi:  10.3878/j.issn.1006-9895.2011.01.04
    [7]
    Fang C G, Guo X L. The microphysical structure of a heavy fog event in North China. J Appl Meteor Sci, 2019, 30(6): 700-709. doi:  10.11898/1001-7313.20190606
    [8]
    Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608
    [9]
    Stekl J, Podzimek J. Old mountain meteorological station Milesovka(Donnersberg) in Central Europe. Bull Amer Meteor Soc, 1993, 74(5): 831-834. doi:  10.1175/1520-0477(1993)074<0831:OMMSMI>2.0.CO;2
    [10]
    Tag P M, Peak J E. Machine learning of maritime fog forecast rules. J Appl Meteor, 1996, 35: 714-724. doi:  10.1175/1520-0450(1996)035<0714:MLOMFF>2.0.CO;2
    [11]
    Lee R R. Two case studies of wintertime cloud systems over the Colorado Rockies. J Atmos Sci, 1984, 41(5): 868-878. doi:  10.1175/1520-0469(1984)041<0868:TCSOWC>2.0.CO;2
    [12]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [13]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [14]
    Yu X R. Influence of cloud and fog on laser propagation and visibility. Meteor Mon, 1982, 8(5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198205013.htm
    [15]
    Li Z H. Studies of fog in China over the past 40 years. Acta Meteor Sinica, 2001, 59(5): 616-624. doi:  10.3321/j.issn:0577-6619.2001.05.011
    [16]
    Wu D, Deng X J, Mao J T, et al. Maocro- and micro-structures of heavy fogs and visibility in the Dayaoshan expressway. Acta Meteor Sinica, 2007, 21(3): 324-352.
    [17]
    Wang X J, Wang X L, Yao Y Q. Aanlysis on the temporal change features and meteorological conditions of fog day in Jiuhua Mountain. Torrential Rain Disaster, 2012, 31(3): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201203013.htm
    [18]
    Zhan L S, Chen W K, Huang M Y. Preliminary Analysis of Microstructure Fluctuation Data in Nanyue and Taishan Clouds. Research on the Microphysical Characteristics of Cloud and Fog Precipitation of China. Beijing: Science Press-1965: 30-40.
    [19]
    Wu D, Deng X J, Mao J T, et al. A study on macro- and micro-structures of heavy fog and visibility at freeway in the Nanling Dayaoshan Mountain. Acta Meteor Sinica, 2007, 65(3): 406-415. doi:  10.3321/j.issn:0577-6619.2007.03.009
    [20]
    Yin Y, Chen C, Chen K, et al. An observational study of the Microphysical properties of atmospheric aerosol at Mt. Huang. Trans Atmos Sci, 2010, 33(2): 129-136. doi:  10.3969/j.issn.1674-7097.2010.02.001
    [21]
    Guo L J, Guo X L, Lou X F, et al. An observational study of diurnal and seasonal variations, and macroscopic and microphysical properties of clouds and precipitation over Mount Lu, Jiangxi, China. Acta Meteor Sinica, 2019, 77(5): 923-937. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905010.htm
    [22]
    Dang Z L, Sang J R, Chang Z L, et al. Analysis of macro and microphysical characteristics of two heavy fog in Liupan Mountain Area. Ningxia Eng Tech, 2020, 19(3): 200-204;210. doi:  10.3969/j.issn.1671-7244.2020.03.003
    [23]
    Wu D, Deng X J, Ye Y X, et al. The study on fog-water chemical composition in Dayaoshan of Nanling Mountain. Acta Meteor Sinica, 2004, 62(4): 476-485. doi:  10.3321/j.issn:0577-6619.2004.04.010
    [24]
    Rosenfeld D, Dai J, Yu X, et al. Inverse relations between amounts of air pollution and orographic precipitation. Science, 2007, 315(5817): 1396-1398. doi:  10.1126/science.1137949
    [25]
    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [26]
    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [27]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146(730): 1999-2049. doi:  10.1002/qj.3803
    [28]
    Takenaka H, Sakashita T, Higuchi A, et al. Development of geolocation correction for geostationary satellite observation by phase only correlation method using visible channel. Remote Sensing, 2020, 12(15): 2472. doi:  10.3390/rs12152472
    [29]
    Yamamoto Y, Ichii K, Higuchi A, et al. Geolocation accuracy assessment of Himawari-8/AHI imagery for application to terrestrial monitoring. Remote Sensing, 2020, 12(9): 1372. doi:  10.3390/rs12091372
    [30]
    Shi X D, Wu B, Fan D. Laser fog droplet spectrometer based on forward Mie scattering. Laser J, 2020, 41(4): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202004023.htm
    [31]
    National Meteorological Centre. Grade of Fog Forecast GB/T 27964-2011. Beijing: China Standard Press, 2012.
    [32]
    Wang H B, Zhang Z W, Liu D Y, et al. Detection of fog at night by using the new geostationary satellite Himawari-8. Plateau Meteor, 2018, 37(6): 1749-1764. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806025.htm
    [33]
    Wang Q, Li J, Fan M Y, et al. Microphysical structure and evolution characteristics of an advection-radiation fog event in Jinan. Meteor Mon, 2019, 45(9): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909010.htm
    [34]
    Zhang H, Shi C E, Yang J, et al. Microphysical characteristics of fog with difference intensities and their relationship wih visibility in Shouxian County. Chinese J Atmos Sci, 2021, 45(6): 1217-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106005.htm
    [35]
    Liu D Y, Pu M J, Yang J, et al. Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006. Acta Meteor Sinica, 2009, 67(1): 147-157. doi:  10.3321/j.issn:0577-6619.2009.01.015
    [36]
    Zhang W, Chen D H, Hu Y J, et al. Microphysical structure analysis of a spring sea fog event in southern coastal area of Fujian. Meteor Mon, 2021, 47(2): 157-169. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202102003.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (860) PDF downloads(133) Cited by()
    • Received : 2022-03-11
    • Accepted : 2022-05-24
    • Published : 2022-07-13

    /

    DownLoad:  Full-Size Img  PowerPoint