[1]
|
Chen X L, Zhao H M, Tian L Q. Remote Sensing of Environment: Models and Applications. Wuhan: Wuhan University Press, 2008: 188-189.
|
[2]
|
|
[3]
|
Song Y L, Wang J L, Tian J F, et al. The spring maize drought index in Northeast China based on mrtrorological drought index. J Appl Meteor Sci, 2019, 30(1): 25-34. doi: 10.11898/1001-7313.20190103
|
[4]
|
|
[5]
|
Cai F, Mi N, Ming H Q, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. doi: 10.11898/1001-7313.20210105
|
[6]
|
Wu X, Wang P J, Gong Y D, et al. Analysis of drought identification and spatio-temporal characteristics for summer corn in Huang-Huai-Hai plain in year of 1961-2015. Transactions of the CSAE, 2019, 35(18): 189-199. doi: 10.11975/j.issn.1002-6819.2019.18.023
|
[7]
|
Wang J X, Guo J P, Li R. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. doi: 10.11898/1001-7313.20190506
|
[8]
|
Zhao J F, Yang X G, Liu Z J. Influence of climate warming on serious low temperature and cold damage and cultivation pattern of spring maize in Northeast China. Acta Ecologica Sinica, 2009, 29(12): 6544-6551. doi: 10.3321/j.issn:1000-0933.2009.12.029
|
[9]
|
Ge D, Wei X G, Jing Z R, et al. Characteristics of drought evolution in spring maize growing season in Northeast maize planting area based on SPEI. J Water Resours Archit Eng, 2020, 18(4): 41-47. doi: 10.3969/j.issn.1672-1144.2020.04.007
|
[10]
|
Wang P J, Huo Z G, Yang J Y, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. doi: 10.11898/1001-7313.20190102
|
[11]
|
Zhao J, Yang X G, Liu Z J, et al. The possible effects of global warming on cropping systems in China Ⅹ. The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China. Scientia Agricultura Sinica, 2014, 47(16): 3143-3158. doi: 10.3864/j.issn.0578-1752.2014.16.003
|
[12]
|
Liu Z J, Yang X G, Wang W F, et al. The possible effects of global warming on cropping systems in China Ⅳ. The possible impact of future climatic warming on the northern limits of spring maize in three provinces of Northeast China. Scientia Agricultura Sinica, 2010, 43(11): 2280-2291. doi: 10.3864/j.issn.0578-1752.2010.11.011
|
[13]
|
|
[14]
|
|
[15]
|
Huang Y X, Liu X G, Shen Y L, et al. Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods. Transactions of the CSAE, 2015, 31(16): 186-195. doi: 10.11975/j.issn.1002-6819.2015.16.025
|
[16]
|
|
[17]
|
Wang Y Y, Zhaxi Yangzong. Assessing vegetation response to meteorological drought in Tibet autonomous region using vegetation condition index. J Appl Meteor Sci, 2016, 27(4): 435-444. doi: 10.11898/1001-7313.20160406
|
[18]
|
|
[19]
|
Fensholt R, Sandholt I. Derivation of a shortwave infrared water stress index from MODIS near and shortwave infrared data in a semiarid environment. Remote Sens Environ, 2003(87): 111-121.
|
[20]
|
Liu X L, Qin Z H. Comparative analysis between NDWI and NDVI indices in regional drought monitoring. Remote Sens Technol Appl, 2007, 22(5): 608-612. doi: 10.3969/j.issn.1004-0323.2007.05.006
|
[21]
|
Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Bot Boreali-Occidentalia Sinica, 2006, 26(10): 2186-2196. doi: 10.3321/j.issn:1000-4025.2006.10.037
|
[22]
|
|
[23]
|
|
[24]
|
Cao J J, An Q, Zhang X, et al. Is satellite Sun-induced chlorophyll fluorescence more indicative than vegetation indices under drought condition?. Sci Total Environ, 2021, 792: 148396. doi: 10.1016/j.scitotenv.2021.148396
|
[25]
|
Shi X L, Wu M Y, Ding H. Difference analysis of SPEI and vegetation remote sensing information in drought monitoring in Southwest China. Trans Chinese Soc Agric Mach, 2020, 51(12): 184-192. doi: 10.6041/j.issn.1000-1298.2020.12.020
|
[26]
|
Chen X, Ji L Y, Yu K, et al. Monitoring of drought in Shandong Province by sun-induced chlorophyll fluorescence. China Sciencepaper, 2021, 16(5): 564-570. doi: 10.3969/j.issn.2095-2783.2021.05.017
|
[27]
|
Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(2): 267-279. doi: 10.11898/1001-7313.20200302
|
[28]
|
Liu E H, Zhou G S, Zhou L, et al. Remote sensing inversion of leaf and canopy water content in different growth stages of summer maize. J Appl Meteor Sci, 2020, 31(1): 52-62. doi: 10.11898/1001-7313.20200105
|
[29]
|
Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. J Appl Meteor Sci, 2016, 27(5): 620-630. doi: 10.11898/1001-7313.20160510
|
[30]
|
|
[31]
|
|
[32]
|
|
[33]
|
Ding Y, Xu J, Wang X, et al. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci Total Environ, 2020, 716(6247): 137166.
|
[34]
|
|
[35]
|
|
[36]
|
Zhou Z M. Soil Moisture Retrieval Uaing Remote Sensing Spectral Indexes and Tempo-spatial Drought Analysis in East China Winter Sheat-planting Area. Beijing: Chinese Academy of Meteorological Sciences, 2013.
|
[37]
|
Kowalski K, Okujeni A, Brell M, et al. Quantifying drought effects i n central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series. Remote Sens Environ, 2022, 268: 112781. doi: 10.1016/j.rse.2021.112781
|
[38]
|
Wang Y J, Fu B J, Liu Y X, et al. Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agr Forest Meteorol, 2021, 306: 18468.
|
[39]
|
|