Citation: | Qin Hao, Zheng Fengqin, Wu Liquan. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. DOI: 10.11898/1001-7313.20220408. |
Fig. 6 Information flows (the shaded) from typhoon intensity to moisture flux divergence of vertical integral(a) and from typhoon intensity to latent energy of vertical integral(b)(dotted areas denote passing the test of 0.05 level, the contour in Fig. 6a denotes the averaged moisture flux diveragence of vertical integral, unit:g·m-2·s-1; the contour in Fig. 6b denotes the averaged latent energy of vertical integral, unit:J·m-2)
[1] |
Zheng Y, Cai Q B, Cheng S C, et al. Characteristics on intensity and precipitation of super Typhoon Rammasun(1409) and reason why it rapidly intensified offshore. Torrential Rain Disaster, 2014, 33(4): 333-341. doi: 10.3969/j.issn.1004-9045.2014.04.005
|
[2] |
Chen J, Sun H M, Gao A N, et al. Comparative analysis of intensity changes between super Typhoon Rammasun(1409) and Damrey(0518) during the period of entering the Beibu Gulf. Torrential Rain Disaster, 2014, 33(4): 392-400. doi: 10.3969/j.issn.1004-9045.2014.04.012
|
[3] |
Xue Y D, Cui X P. Moisture sources and quantitative analyses of source contributions of precipitation associated with Rammasun(1409). Chinese J Atmos Sci, 2020, 44(2): 341-355. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202002009.htm
|
[4] |
Li C Y, Niu X X. The effect of the typhoon dynamics process (CISK) to its moving. Acta Meteor Sinica, 1988, 46(4): 497-501. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198804014.htm
|
[5] |
He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|
[6] |
Rodgers E B, Adler R F. Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon Wea Rev, 1981, 109(3): 506-521. doi: 10.1175/1520-0493(1981)109<0506:TCRCAD>2.0.CO;2
|
[7] |
Lonfat M, Marks F D, Chen S Y. Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission(TRMM) microwave imager: A global perspective. Mon Wea Rev, 2004, 132(7): 1645-1660. doi: 10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2
|
[8] |
Niu X X, Du H L, Liu J Y. The numerical simulation of rainfall and precipitation mechanism associated with Typhoon Sinlaku(0216). Acta Meteor Sinica, 2005, 63(1): 57-68. doi: 10.3321/j.issn:0577-6619.2005.01.007
|
[9] |
Niu X X, Du H L, Teng D G, et al. Main factors affecting the rainfall caused by landing typhoons. Torrential Rain Disaster, 2010, 29(1): 76-80. doi: 10.3969/j.issn.1004-9045.2010.01.013
|
[10] |
Jiang H Y. The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon Wea Rev, 2012, 140(4): 1164-1176. doi: 10.1175/MWR-D-11-00134.1
|
[11] |
Alvey G R, Zawislak J, Zipser E J. Precipitation properties observed during tropical cyclone intensity change. Mon Wea Rev, 2015, 143(11): 4476-4492. doi: 10.1175/MWR-D-15-0065.1
|
[12] |
Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304
|
[13] |
Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104
|
[14] |
Tu S F, Xu J J, Chan J C L, et al. Recent global decrease in the inner-core rain rate of tropical cyclones. Nat Commun, 2021, 12(1): 1948. doi: 10.1038/s41467-021-22304-y
|
[15] |
Liang X S. Information flow within stochastic dynamical systems. Phys Rev E, 2008, 78(3): 031113. doi: 10.1103/PhysRevE.78.031113
|
[16] |
Liang X S. The Liang-Kleeman information flow: Theory and applications. Entropy, 2013, 15(1): 327-360. doi: 10.3390/e15010327
|
[17] |
Liang X S. Unraveling the cause-effect relation between time series. Phys Rev E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
|
[18] |
Stips A, Macias D, Coughlan C, et al. On the causal structure between CO2 and global temperature. Sci Rep, 2016, 6: 21691. doi: 10.1038/srep21691
|
[19] |
Xiao H X, Zhang F, Miao L J, et al. Long-term trends in Arctic surface temperature and potential causality over the last 100years. Climate Dyn, 2020, 55(5/6): 1443-1456.
|
[20] |
Liang X S, Xu F, Rong Y N, et al. El Ni o Modoki can be mostly predicted more than 10 years ahead of time. Sci Rep, 2021, 11: 17860. doi: 10.1038/s41598-021-97111-y
|
[21] |
Cai Y C, Jin C J, Wang A Z, et al. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China. Plos One, 2015, 10(4): e0120026. doi: 10.1371/journal.pone.0120026
|
[22] |
Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405
|
[23] |
Yu Z F, Wang Y Q, Xu H M, et al. On the Relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. J Appl Meteor Climatol, 2017, 56(10): 2883-2901. doi: 10.1175/JAMC-D-16-0334.1
|
[24] |
Jiang X L, Ren F M, Ma Z G, et al. Rainfall characteristic and cause comparison of two track-similar tropical cyclones in 2014. Chinese J Geophys, 2017, 60(4): 1305-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704007.htm
|
[25] |
Qin L, Wu Q S, Zeng X T, et al. Analysis on cause of rapid intensification of asymmetrical Typhoon Hato. Torrential Rain Disaster, 2019, 38(3): 212-220. doi: 10.3969/j.issn.1004-9045.2019.03.003
|
[26] |
Wu T Y, Zhou Y S, Wang Y Q, et al. Comparative analysis of precipitation characteristics of the westward typhoon cases "Bilis" and "Sepat" during landfall under different monsoon intensities. Chinese J Atmos Sci, 2021, 45(6): 1173-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106002.htm
|
[27] |
Zhou X Y, Cheng Z Q, Tu J, et al. Analysis on the asymmetrical precipitation and evolution of dynamic and thermodynamic structure of Typhoon Ewiniar. Acta Meteor Sinica, 2020, 78(6): 899-913. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006002.htm
|
[28] |
Lü X Y, Xu Y L, Huang H Q. Analysis on environmental factors of the extremely rapid intensification of Typhoon "Rammasun"(1409) in the northern South China Sea. Marin Forec, 2021, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202103001.htm
|
[29] |
Marks F D. Evolution of the structure of precipitation in Hurricane Allen(1980). Mon Wea Rev, 1985, 113(6): 909-930. doi: 10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2
|
[30] |
Marks F D, Houze Jr R A, Gamache J. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part Ⅰ: Kinematic structure. J Atmos Sci, 1992, 49(11): 919-942. doi: 10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2
|
[31] |
Li C Y. The "CISK" theory and its further research. Meteor Sci Technol, 1984(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198404000.htm
|
[32] |
Zhang J H, Zhang L B, Pang S R. Sensitive experiments on the boundary layer schemes during the strengthening process of typhoon Khanun. J Appl Oceanogr, 2007, 26(1): 26-35. doi: 10.3969/j.issn.1000-8160.2007.01.004
|
[33] |
Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of Super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi: 10.11898/1001-7313.20170306
|
[34] |
Zhang J H, Pang S R. Analysis on the cause of rainstorm of the Typhoon Meranti(1010). Torrential Rain Disaster, 2011, 30(4): 305-312. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104003.htm
|
[35] |
Lu Y B, Zhang T F, Xu B L, et al. Mesoscale analysis on a heavy rain associated with Bengal Bay storm and cold air in west Yunnan. J Appl Meteor Sci, 2006, 17(2): 201-206. http://qikan.camscma.cn/article/id/20060234
|
[36] |
Chen Y, Su H L, Shou S W, et al. Numerical simulation and diagnosis analysis on heavy rain in east Hebei by Typhoon Matsa. J Appl Meteor Sci, 2008, 19(2): 209-218. http://qikan.camscma.cn/article/id/20080237
|
[37] |
Qin W, Zhao J B, Huang R C, et al. Cause analysis on the structural change of Typhoon Mangkhut during its landing and the abnormal distribution of heavy precipition in Guangxi. J Trop Meteor, 2019, 35(5): 587-595. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201905002.htm
|
[38] |
Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in the South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302
|
[39] |
Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103
|