Han Nianfei, Yang Lu, Chen Mingxuan, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. DOI:  10.11898/1001-7313.20220409.
Citation: Han Nianfei, Yang Lu, Chen Mingxuan, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. DOI:  10.11898/1001-7313.20220409.

Machine Learning Correction of Wind, Temperature and Humidity Elements in Beijing-Tianjin-Hebei Region

DOI: 10.11898/1001-7313.20220409
  • Received Date: 2022-03-15
  • Rev Recd Date: 2022-04-25
  • Publish Date: 2022-07-13
  • Weather conditions have an important impact on agricultural production, transportation, economic activities, so the improvement of forecast accuracy has been a constant concern of the society. After more than 100 years of continuous development, the accuracy of numerical weather model has been continuously improved, but there are still inevitable forecast errors. Therefore, it is an important issue worthy of study to improve the prediction accuracy by studying various error correction methods and post-processing the results of numerical weather prediction.Machine learning method is applied to revise four meteorological elements forecasted by RMAPS-RISE(rapid-update multi-scale analysis and prediction system-rapid integration and seamless ensemble) system developed by Beijing Institute of Urban Meteorology. First, the data are preprocessed by interpolating the system forecast data and extracting the data of each element site from the grid data. The observations of automatic weather stations and forecast data are processed to establish unified datasets for the application and modeling of machine learning. Second, linear regression method, gradient boosting regression method, XGBoost method and Stacking method are designed to combine various machine learning algorithms to improve the generalization ability of the model. In addition, an error analysis model is constructed according to four correction methods, and the correction technology research and experimental application of the forecast errors of each station's initial time under the complex terrain of Beijing-Tianjin-Hebei are carried out. Finally, the improvement of the revised forecast of different machine learning methods compared with the original RMAPS-RISE system forecast accuracy is compared.In the experimental part, two modeling ideas are proposed, and four machine learning methods are used to conduct correction and comparison experiments. It shows among the modeling ideas based on error analysis, the Stacking method has the best effect, effectively reducing the forecast error of the original system for the next 3-12 hours for 24 initial times. Among the other three single machine learning method, XGBoost method performs the best, followed by the gradient boosting regression method and linear regression method, and all of them have a significant positive effect on the prediction accuracy. Overall, the forecast error correction model based on machine learning methods can effectively reduce the original forecast error of RMAPS-RISE system, and they have broad application prospects in forecast correction. It is helpful to further improve the forecast accuracy of the objective interpretation product of the site under complex terrain.
  • Fig. 1  Number of valid samples for each initial time in different seasons

    Fig. 2  Comparison of 2 m temperature root mean square error of RISE in spring before and after correction

    Fig. 3  Comparison of 2 m relative humidity root mean square error of RISE in four seasons before and after correction

    Fig. 4  Comparison of 10 m wind speed root mean square error of RISE in summer before and after correction

    Fig. 5  Comparison of 2 m temperature (the bar) and 10 m wind speed (the line) on 19 Feb 2022

    Fig. 6  The same as in Fig. 5, but for 4 Mar 2022

    Table  1  Corrected results for 2 m temperature based on four methods in each season

    统计量 方法 春季 夏季 秋季 冬季
    均方根误差平均值/℃ 线性回归方法 2.16 1.93 1.93 2.40
    GBRT方法 2.08 1.82 1.83 2.28
    XGBoost方法 1.88 1.61 1.60 1.98
    Stacking方法 1.55 1.44 1.44 1.77
    均方根误差变化百分比/% 线性回归方法 -10.00 -15.72 -19.92 -19.19
    GBRT方法 -13.00 -20.52 -24.07 -23.23
    XGBoost方法 -21.67 -29.69 -33.61 -33.33
    Stacking方法 -35.40 -37.12 -40.25 -40.40
    注:RISE产品春季、夏季、秋季、冬季均方根误差平均值分别为2.40,2.29,2.41,2.97℃。
    DownLoad: Download CSV

    Table  2  Corrected results for 2 m relative humidity based on four methods in each season

    统计量 方法 春季 夏季 秋季 冬季
    均方根误差平均值/% 线性回归方法 12.34 10.64 12.00 12.57
    GBRT方法 11.72 9.85 11.12 11.61
    XGBoost方法 10.24 8.66 9.69 10.18
    Stacking方法 8.89 7.61 8.50 9.04
    均方根误差变化百分比/% 线性回归方法 -11.35 -19.45 -21.41 -17.30
    GBRT方法 -15.80 -25.44 -27.18 -23.62
    XGBoost方法 -26.44 -34.44 -36.44 -33.03
    Stacking方法 -36.14 -42.39 -44.34 -40.53
    注:RISE产品春季、夏季、秋季、冬季均方根误差平均值分别为13.92%, 13.21%, 15.27%, 15.20%。
    DownLoad: Download CSV

    Table  3  Corrected results for 10 m wind speed based on four methods in each season

    统计量 方法 春季 夏季 秋季 冬季
    均方根误差平均值/(m·s-1) 线性回归方法 1.31 1.07 1.25 1.43
    GBRT方法 1.26 1.01 1.08 1.31
    XGBoost方法 1.12 0.89 0.94 1.13
    Stacking方法 0.97 0.79 0.82 1.00
    均方根误差变化百分比/% 线性回归方法 -8.39 -14.40 -19.87 -23.94
    GBRT方法 -11.89 -19.20 -30.77 -30.32
    XGBoost方法 -21.68 -28.80 -39.74 -39.89
    Stacking方法 -32.17 -36.80 -47.44 -46.81
    注:RISE产品春季、夏季、秋季、冬季均方根误差平均值分别为1.43,1.25,1.56,1.88 m·s-1
    DownLoad: Download CSV

    Table  4  Corrected results for 10 m wind direction based on four methods in each season

    统计量 方法 春季 夏季 秋季 冬季
    平均绝对偏差平均值/(°) 线性回归方法 69.93 77.20 74.15 72.13
    GBRT方法 68.47 75.16 72.90 69.60
    XGBoost方法 63.10 69.70 68.20 63.96
    Stacking方法 58.80 65.63 64.88 60.32
    平均绝对偏差变化百分比/% 线性回归方法 -1.23 -4.43 -16.27 -8.98
    GBRT方法 -3.29 -6.96 -17.68 -12.18
    XGBoost方法 -10.88 -13.72 -22.99 -19.29
    Stacking方法 -16.95 -18.75 -26.74 -23.89
    注:RISE产品春季、夏季、秋季、冬季平均绝对偏差平均值分别为70.80°, 80.79°, 88.56°, 79.25°。
    DownLoad: Download CSV
  • [1]
    Chen J, Chen D H, Yan H. A brief review on the development of ensemble prediction system. J Appl Meteor Sci, 2002, 13(4): 497-507. doi:  10.3969/j.issn.1001-7313.2002.04.013
    [2]
    Li C Z, Chen D H. The development and application of the operational ensemble prediction system at National Meteorological Center. J Appl Meteor Sci, 2002, 13(1): 1-15. doi:  10.3969/j.issn.1001-7313.2002.01.001
    [3]
    Zhang R H, Shen X S. Development of China's national new generation operational numerical prediction system GRAPES. Chinese Sci Bull, 2008, 53(20): 2393-2395. doi:  10.3321/j.issn:0023-074X.2008.20.001
    [4]
    Deng G, Gong J D, Deng L T. Development of mesoscale ensemble prediction system at National Meteorological Center. J Appl Meteor Sci, 2010, 21(5): 513-523. doi:  10.3969/j.issn.1001-7313.2010.05.001
    [5]
    Glahn H R, Lowry D A. The use of model output statistics(MOS) in objective weather forecasting. J Appl Meteor, 1972, 11: 1208-1211.
    [6]
    Zhao S R. Multi-model consensus forecast for temperature. J Appl Meteor Sci, 2006, 17(1): 62-68. http://qikan.camscma.cn/article/id/20060109
    [7]
    Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101
    [8]
    Li Y, Chen H L. Review of machine learning appronches for modern agrometeorology. J Appl Meteor Sci, 2020, 31(3);257-266. doi:  10.11898/1001-7313.20200301
    [9]
    Sun Q D, Jiao R L, Xia J J, et al. Adjusting wind speed prediction of numerical weather forecast model based on machine learning methods. Meteor Mon, 2019, 45(3): 426-436. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201903012.htm
    [10]
    Han L, Sun J, Zhang W, et al. A machine learning nowcasting method based on real-time reanalysis data. J Geophys Res Atmos, 2017, 122(7): 4038-4051. doi:  10.1002/2016JD025783
    [11]
    Han L, Chen M X, Chen K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts. Adv Atmos Sci, 2021, 38: 1444-1459. doi:  10.1007/s00376-021-0215-y
    [12]
    Yang L, Han F, Chen M X. Thunderstorm gale identification method based on support vector machine. J Appl Meteor Sci, 2018, 29(6): 42-51. doi:  10.11898/1001-7313.20180604
    [13]
    Tan J H, Chen W L, Wang S S. Using a machine learning method for temperature forecast in Hubei Province. Adv Meteor Sci Tech, 2018, 8(5): 46-50. doi:  10.3969/j.issn.2095-1973.2018.05.006
    [14]
    Shu X S, Wang Z R, Li F W, et al. Short-term rainfall multi-mode integrated forecasting based on machine leaning models. South-to-North Water Transfers and Water Science & Technology, 2020, 18(1): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202001009.htm
    [15]
    Burke A. Calibration of machine learning-based probabilistic hail predictions for operational forecasting. Bull Amer Meteor Soc, 2020, 35: 149-168.
    [16]
    Chen T, Guestrin C. XGBoost: A Scalabletree Boosting System. 2016.
    [17]
    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
    [18]
    Mao K Y, Zhao C M, He J. A research for 10 m wind speed prediction based on XGBoost. Journal of Chengdu University of Information Technology, 2020, 35(6): 604-609. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX202006004.htm
    [19]
    Ren P, Chen M X, Cao W H, et al. Error analysis and correction of short-term numerical weather prediction under complex terrain based on machine learning. Acta Meteor Sinica, 2020, 78(6): 1002-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006009.htm
    [20]
    Xu L, Wang T L, Liu S G, et al. Model based on SSA-XGBoost method for predicting precipitation change trends. Journal of Earth Environment, 2020, 11(5): 475-485. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202005002.htm
    [21]
    Chen M X, Gao F, Kong R, et al. Introduction of auto-nowcasting system for convective storm and its performance in Beijing Olympics meteorological service. J Appl Meteor Sci, 2010, 21(4): 395-404. doi:  10.3969/j.issn.1001-7313.2010.04.002
    [22]
    Chen M X, Wang Y C, Yu X D. Improvement and application test of TREC algorithm for convective storm nowcast. J Appl Meteor Sci, 2007, 18(5): 690-701. doi:  10.3969/j.issn.1001-7313.2007.05.014
    [23]
    Yang L, Chen M, Chen M X, et al. Fusion of 3D high temporal and spatial resolution wind field and its application in nowcasting of severe convective weather. Acta Meteor Sinica, 2019, 77(2): 243-255. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902006.htm
    [24]
    Song L Y, Chen M X, Cheng C L, et al. Characteristics of summer QPE error and a climatological correction method over Beijing-Tianjin-Hebei region. Acta Meteor Sinica, 2019, 77(3): 497-515. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201903009.htm
    [25]
    Cheng C L, Chen M, Chen M X, et al. Comparative experiments on two high spatiotemporal resolution blending algorithms for quantitative precipitation nowcasting. Acta Meteor Sinica, 2019, 77(4): 701-714. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904008.htm
    [26]
    Fushiki T. Estimation of prediction error by using K-fold cross-validation. Statistics & Computing, 2011, 21(2): 137-146.
    [27]
    Dasarathy B V, Sheela B V. A composite classifier system design: Concepts and methodology. Proceeding of the IEEE, 1979, 67(5): 708-713. doi:  10.1109/PROC.1979.11321
    [28]
    Wolpert D H. Stacked generalization. Pergamon, 1992, 5(2): 241-259.
    [29]
    Ding L, Luo P L. Research on default risk early warning of P2P online loan based on Stacking integration strategy. Review of Investment Studies, 2017(4): 41-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TZYJ201704004.htm
    [30]
    Su G, Qin S W, Qiao S S, et al. Debris flow susceptibility evaluation based on Stacking ensemble learning: A case study in Yajiang, Sichuan Province. Global Geology, 2021, 40(1): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202101022.htm
    [31]
    Huang Q L, Huang Z X, Yang Y. An empirical study of stock forecasting based on recursive characteristic elimination and Stacking integrated learning. Journal of Nanning Normal University(Nat Sci Ed), 2021, 38(3): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ202103008.htm
    [32]
    Min J J. Evaluation on surface meteorological element forecast by Beijing rapid update cycle system. J Appl Meteor Sci, 2014, 25(3): 265-273. doi:  10.3969/j.issn.1001-7313.2014.03.002
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(4)

    Article views (1068) PDF downloads(192) Cited by()
    • Received : 2022-03-15
    • Accepted : 2022-04-25
    • Published : 2022-07-13

    /

    DownLoad:  Full-Size Img  PowerPoint