分类编号 | 能见度范围/m | 能见度等级名称 |
0 | 大于10000 | 无雾 |
1 | 1001~10000 | 轻雾 |
2 | 501~1000 | 雾 |
3 | 201~500 | 大雾 |
4 | 51~200 | 浓雾 |
5 | 0~50 | 强浓雾 |
Citation: | Liu Dongwei, Mu Haizhen, He Qianshan, et al. A low visibility recognition algorithm based on surveillance video. J Appl Meteor Sci, 2022, 33(4): 501-512. DOI: 10.11898/1001-7313.20220410. |
Table 1 The standard for visibility classification
分类编号 | 能见度范围/m | 能见度等级名称 |
0 | 大于10000 | 无雾 |
1 | 1001~10000 | 轻雾 |
2 | 501~1000 | 雾 |
3 | 201~500 | 大雾 |
4 | 51~200 | 浓雾 |
5 | 0~50 | 强浓雾 |
Table 2 The total number of original and modified samples in each category
等级 | 分类编号 | 白天 | 夜间 | |||
原有样本量 | 调整后样本量 | 原有样本量 | 调整后样本量 | |||
无雾 | 0 | 10537 | 10537 | 9597 | 9597 | |
轻雾 | 1 | 4997 | 4997 | 4159 | 4159 | |
雾 | 2 | 54 | 6912 | 131 | 7546 | |
大雾 | 3 | 78 | 6630 | 165 | 7574 | |
浓雾 | 4 | 85 | 7225 | 165 | 7574 |
Table 3 Image visibility recognition accuracy at various degrees of visibility
时段 | 项目 | 自动气象站观测能见度等级 | ||||
无雾 | 轻雾 | 雾 | 大雾 | 浓雾 | ||
白天 | 样本量 | 561 | 1812 | 77 | 244 | 160 |
准确率/% | 88.59 | 92.72 | 76.62 | 59.43 | 81.25 | |
夜间 | 样本量 | 727 | 1534 | 88 | 366 | 186 |
准确率/% | 85.01 | 85.92 | 56.82 | 95.90 | 12.37 |
Table 4 Failed recognition of image visibility level
时段 | 自动气象站观测能见度等级 | 识别错误样本量 | ||||
无雾 | 轻雾 | 雾 | 大雾 | 浓雾 | ||
白天 | 无雾 | 33 | 0 | 0 | 0 | |
轻雾 | 63 | 9 | 2 | 0 | ||
雾 | 0 | 98 | 25 | 0 | ||
大雾 | 0 | 0 | 7 | 30 | ||
浓雾 | 0 | 0 | 3 | 7 | ||
夜间 | 无雾 | 113 | 0 | 0 | 0 | |
轻雾 | 108 | 10 | 1 | 0 | ||
雾 | 0 | 96 | 7 | 0 | ||
大雾 | 1 | 7 | 28 | 163 | ||
浓雾 | 0 | 0 | 3 | 7 |
[1] |
China Meteorological Administration. Specifications for Surface Meteorological Observation. Beijing: China Meteorological Press, 2003.
|
[2] |
Jiang J, Zhang G P, Gao J B. Main influencing factors of visibility in Beijing. J Appl Meteor Sci, 2018, 29(2): 188-199. doi: 10.11898/1001-7313.20180206
|
[3] |
Zhang H, Shi C E, Yang J, et al. Microphysical characteristics of fog with different intensities and their relationship with visibility in Shouxian County. Chinese J Atmos Sci, 2021, 45(6): 1217-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106005.htm
|
[4] |
Si P, Gao R X. A comparative evaluation on automatic and manual observations of fog and haze in Tianjin. J Appl Meteor Sci, 2015, 26(2): 240-246. doi: 10.11898/1001-7313.20150212
|
[5] |
Xia D, Wu Z Q, Tan H B, et al. Analysis and correction of visibility measured by automatic observing system in Guangdong. Meteor Sci Technol, 2014, 42(1): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201401011.htm
|
[6] |
Ding Y H, Liu Y J. Long term variation characteristics of fog and haze and their relationship with atmospheric humidity in China in recent 50 years. Sci China(Earth Sci), 2014, 44(1): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401005.htm
|
[7] |
Pan B F, Wang W, Li L, et al. Analysis of season of formation and characteristics of pollution about fog or haze at key cities in autumn and winter in China. Environment and Sustainable Development, 2013(1): 33-36. doi: 10.3969/j.issn.1673-288X.2013.01.007
|
[8] |
Song H J, Gao Y Y, Chen Y Z. Traffic visibility estimation based on dynamic camera calibration. Chinese Journal of Computers, 2015, 38(6): 1172-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201506007.htm
|
[9] |
Li J, Ge J Q, Chen Q M. Visibility detection algorithm for road video. Computer Engineering, 2009, 35(16): 175-177. doi: 10.3969/j.issn.1000-3428.2009.16.063
|
[10] |
Lü W T, Tao S C, Liu Y F, et al. Measurement of meteorological visibility based on digital camera technology-double brightness difference method and experimental research. Chinese J Atmos Sci, 2004, 28(4): 559-568. doi: 10.3878/j.issn.1006-9895.2004.04.08
|
[11] |
Chen Z Z, Chen Q M. Video contrast visibility detection algorithm and its implementation based on camera self-calibration. Journal of Electronics & Information Technology, 2010, 32(12): 2907-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201012021.htm
|
[12] |
Li B, Dong R, Chen Q M. Visibility detection based on traffic video contrast analysis without artificial markers. Journal of Computer-aided Design & Computer Graphics, 2009, 21(11): 1575-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200911010.htm
|
[13] |
Guo S S, Qi W X, Qi Y. Video visibility measurement method based on dark channel prior. Computer & Digital Engineering, 2014, 42(4): 694-697. doi: 10.3969/j.issn1672-9722.2014.04.036
|
[14] |
Hu P, Yang X D. An algorithm for fast detecting expressway visibility. Journal of Highway and Transportation Research and Development, 2017, 34(4): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201704018.htm
|
[15] |
Lu T S, Yang J, Deng M, et al. A visibility estimation method based on digital total-sky images. J Appl Meteor Sci, 2018, 29(6): 701-709. doi: 10.11898/1001-7313.20180606
|
[16] |
Gao J J, Tian H, Wu H, et al. A visibility detection method using daytime road images based on brightness contrast and dark channel prior principle. Meteor Sci Technol, 2019, 47(3): 386-396. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201903003.htm
|
[17] |
Li Y, Chen H L. Review of machine learning approaches for modern agrometeorology. J Appl Meteor Sci, 2020, 31(3): 257-266. doi: 10.11898/1001-7313.20200301
|
[18] |
Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi: 10.11898/1001-7313.20210506
|
[19] |
Yang L, Nan G Q, Chen M X, et al. The construction and comparison of high resolution precipitation type prediction models based on three machine learning methods. Acta Meteor Sinica, 2021, 79(6): 1022-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202106008.htm
|
[20] |
Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109
|
[21] |
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi: 10.11898/1001-7313.20220301
|
[22] |
Zhang Y B, Chen M X, Han L, et al. Multi-element deep learning fusion correction method for numerincal weather prediction. Acta Meteor Sinica, 2022, 80(1): 153-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201011.htm
|
[23] |
Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. doi: 10.11898/1001-7313.20220303
|
[24] |
Shi Y L, Wang B, Bu F. Atmospheric visibility measurement based on image feature. Journal of Nanjing University of Science and Technology, 2018, 42(5): 532-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201805007.htm
|
[25] |
Miao K C, Wang C H, Zhang Y L, et al. Road visibility estimation method based on AlexNet algorithm. Computer and Modernization, 2019, 286(6): 87-91. doi: 10.3969/j.issn.1006-2475.2019.06.015
|
[26] |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 27964-2011. Grade of Fog Forecast. Beijing: Standards Press of China, 2012.
|
[27] |
Zhou F Y, Jin L P, Dong J. Review of convolutional neural network. Chinese Journal of Computers, 2017, 191(11): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
|
[28] |
Zhao H Y, Wu L H, Shi Y J, et al. Moving target detection method based on HSV color space. Modern Electronics Technique, 2013, 36(12): 45-48. doi: 10.3969/j.issn.1004-373X.2013.12.014
|
[29] |
Fan W D, Zhou S B, Xin P C. Target tracking of HSV color space characteristic and Kalman filer. Computer Engineering and Applications, 2011, 47(13): 169-173. doi: 10.3778/j.issn.1002-8331.2011.13.048
|
[30] |
Yuan C L, Xiong Z L, Zhou X H, et al. Study of infrared image edge detection based on Sobel operator. Laser & Nerared, 2009, 39(1): 85-87. doi: 10.3969/j.issn.1001-5078.2009.01.023
|
[31] |
Ketkar N. Introduction to Keras//Deep Learning with Python. Berkeley: Apress, 2017: 97-111.
|
[32] |
Wang X J, Guo G D. Comparative study of re-sampling methods for imbalanced data sets. Microcomputer Information, 2011, 27(12): 155-157. https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ201112064.htm
|
[33] |
Zhou Z H. Machine Learning. Beijing: Tsinghua University Press, 2016.
|
[34] |
Tang N, Lv Y. Median filering image denoising method based on noise pixel detection. Microcomputer and Application, 2015, 34(5): 35-38. doi: 10.3969/j.issn.1674-7720.2015.05.013
|
[35] |
Cressman G P. An operational objective analysis system. Mon Wea Rev, 1959, 87(10): 367-374. doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
|
[36] |
Deng L. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 2012, 29(6): 141-142. doi: 10.1109/MSP.2012.2211477
|
[37] |
Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502
|
[38] |
Long Y, Xia G S, Li S, et al. On creating benchmark dataset for aerial image interpretation: Reviews, guidances and million-AID. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4205-4230. doi: 10.1109/JSTARS.2021.3070368
|