Li Zhe, Chen Jiong, Ma Zhanshan, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. DOI:  10.11898/1001-7313.20220502.
Citation: Li Zhe, Chen Jiong, Ma Zhanshan, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. DOI:  10.11898/1001-7313.20220502.

Deviation Distribution Features of CMA-GFS Cloud Prediction

DOI: 10.11898/1001-7313.20220502
  • Received Date: 2022-03-25
  • Rev Recd Date: 2022-06-30
  • Publish Date: 2022-09-15
  • Clouds play a vital role in weather, climate system and the atmospheric water cycle. The diagnosis and evaluation of numerical model prediction results is important for numerical model research and development. Reasonable diagnosis and evaluation methods can not only provide references for model researchers to optimize model schemes, but also help users understand the performance of model prediction. The cloud characteristics of different regions and seasons should be considered for evaluation because the attributes in different regions are markedly different. The performance and deviation characteristics of the operational CMA-GFS of four seasons are evaluated, based on the reanalysis of ERA5 reanalysis data from March 2021 to February 2022. The frequency bias of cloud occurrence, cloud fraction, integrated cloud hydrometeors from various levels, and the bias and root mean square error of those variables are carefully diagnosed and evaluated via different methods. The deviation characteristics of cloud are emphatically analyzed according to different regions. The possible causes for the significant difference of cloud prediction deviation characteristics at different levels in different regions are preliminarily discussed. The results show that the overall distribution of cloud predicted by CMA-GFS is reasonable, which can describe the meridional peak and valley distribution characteristics of global cloud and reflect the seasonal trend. The cloud amount deviation of high cloud and medium cloud by CMA-GFS is greater than that of low cloud. The root mean square error of cloud amount of high cloud and medium cloud is smaller than that of low cloud. And the model stability for high cloud and medium cloud prediction is also better. The liquid-phased hydrometers integration is mainly negative deviation, and the ice-phased hydrometers integration is mainly positive deviation. The causes of the deviation of cloud predicted by CMA-GFS are different in different regions. In tropical region the deviation is related to the incongruity of convective parameterization and microphysical schemes, while in middle and high latitudes regions the deviations are related to the bias of relative humidity. It also shows that the diagnosis of model cloud features will cover up the actual problems only by a single method, and it needs to be evaluated comprehensively by combining a variety of methods.
  • Fig. 1  Seasonal mean cloud fraction from ERA5 reanalysis data

    Fig. 2  Frequency bias of cloud occurrence

    Fig. 3  Meridional mean cloud fraction from CMA-GFS and ERA5 reanalysis data

    Fig. 4  Evaluation of CMA-GFS cloud occurrence and cloud fraction prediction skill

    Fig. 5  Seasonal mean liquid water hydrometer integration

    Fig. 6  Seasonal mean solid water hydrometer integration

    Fig. 7  Meridional distribution of seasonal mean cloud hydrometeor integration from CMA-GFS and ERA5 reanalysis data

    Fig. 8  Evaluation of the seasonal mean cloud hydrometeors integration bias and root mean square error prediction skill

    Fig. 9  Meridional distribution of seasonal mean precipitation rate from CMA-GFS forecasting and ERA5 reanalysis data, GPM data

  • [1]
    Stephens G L.Cloud feedbacks in the climate system:A critical review.J Climate, 2005, 18(2):237-273. doi:  10.1175/JCLI-3243.1
    [2]
    Morrison H, Gettelman A, Steven J G. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3(CAM3). Part Ⅱ: Single-column and global results. J Climate, 2008, 21(15): 3660-3679. doi:  10.1175/2008JCLI2116.1
    [3]
    Hahn C J, Warren S G. A Gridded Climatology of Clouds over Land (1971-96) and Ocean (1954-97) from Surface Observations Worldwide. Numeric Data Package NDP-026E ORNL/CDIAC-153, CDIAC, Department of Enery, Oak Ridge, Tennessee, 2007.
    [4]
    Stephens G L, Vane D G, Boain R J, et al. The cloudsat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull Amer Meteor Soc, 2002, 83(12): 1771-1790. doi:  10.1175/BAMS-83-12-1771
    [5]
    Yin J F, Wang D H, Zhai G Q. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China. Adv Earth Sci, 2014, 29(2): 238-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402005.htm
    [6]
    Deng T, Zhang L, Chen M, et al. The influence of high cloud and aerosol radiative effect on boudary layer. Chinese J Atmos Sci, 2010, 34(5): 979-987. doi:  10.3878/j.issn.1006-9895.2010.05.12
    [7]
    Wilson R J, Lewis S R, Montabone L, et al. Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys Res Lett, 2008, 35(7): L07202. doi:  10.1029/2007GL032405/pdf
    [8]
    Gates W L, Boyle J S, Covey C, et al. An overview of the results of the atmospheric model intercomparison project (AMIPI). Bull Amer Meteor Soc, 1999, 80(1): 29-55. doi:  10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
    [9]
    Jacob D, Van den Hurk B J J M, Andræ U, et al. A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP period. Meteor Atmos Phys, 2001, 77: 19-43. doi:  10.1007/s007030170015
    [10]
    Klein S, Jakob C. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Wea Rev, 1999, 127(10): 2514-2531. doi:  10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
    [11]
    Solomon S, Qin D, Manninget M, et al. Climiate Change 2007: The Physical Sciences Basis. Cambridge: Cambriged University Press, 2007.
    [12]
    Cotton W R. Numerical simulation of precipitation development in supercooled cumuli-Part I. Mon Wea Rev, 1972, 100(11): 757-763. doi:  10.1175/1520-0493(1972)100<0757:NSOPDI>2.3.CO;2
    [13]
    Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm. J Atmos Sci, 1977, 34(10): 1596-1618. doi:  10.1175/1520-0469(1977)034<1596:NSOTLH>2.0.CO;2
    [14]
    Takahashi T. Hail in an axisymmetric cloud model. J Atmos Sci, 1976, 33(8): 1576-1601.
    [15]
    Paluch I R. Size sorting of hail in a three-dimensional updraft and implications for hail suppression. J Appl Meteor, 1978, 17(6): 763-777. doi:  10.1175/1520-0450(1978)017<0763:SSOHIA>2.0.CO;2
    [16]
    Raymond D J, Blyth A M. Precipitation development in a New Mexico thunderstorm. Quart J Roy Meteor Soc, 1989, 115(490): 1397-1423. doi:  10.1002/qj.49711549011
    [17]
    Sokol Z, Zacharov P, Skripnikova K. Simulation of the storm on 15 August, 2010, using a high resolution COSMO NWP model. Atmos Res, 2014, 137: 100-111. doi:  10.1016/j.atmosres.2013.09.015
    [18]
    Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev, 2004, 132(1): 103-120. doi:  10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
    [19]
    Morrison H, Curry J A, Khvorostyanov V I. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅰ: Description. J Atmos Sci, 2005, 62(6): 1665-1677. doi:  10.1175/JAS3446.1
    [20]
    Thompson G, Field P R, Rasmussen R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ: Implementation of a new snow parameterization. Mon Wea Rev, 2008, 136(12): 5095-5115. doi:  10.1175/2008MWR2387.1
    [21]
    Lim K S S, Hong S Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Wea Rev, 2010, 138(5): 1587-1612. doi:  10.1175/2009MWR2968.1
    [22]
    Hu Z J, Yan C F. Numerical simulation of microphysical processes in stratiform clouds (I)-Microphysical model. J Academy Meter Sci, 1986, 1(1): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198601005.htm
    [23]
    Hu Z J, Lou X F, Bao S W, et al. A simplifed explicit scheme of phase mixed cloud and precipitation. J Appl Meteor Sci, 1998, 9(3): 257-264. http://qikan.camscma.cn/article/id/19980338
    [24]
    Xu H B, Duan Y. Some questions in studying the evolution of size distribution spectaum of hydrometeor paricels. Acta Meteor Sinica, 1999, 57(4): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199904005.htm
    [25]
    Sun J, Lou X F, Hu Z J, et al. Numerical experiment of the coupling of CAMS complex microphysical scheme and GRAPES model. J Appl Meteor Sci, 2008, 19(3): 315-325. doi:  10.3969/j.issn.1001-7313.2008.03.007
    [26]
    Hu Z J, He G F. Numerical simulation of micro processes in cumulonimbus clouds (I) microphysical model. Acta Meteor Sinica, 1987, 45(4): 467-484. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198704011.htm
    [27]
    Liu Q J, Hu Z J, Zhou X J. Explicit cloud schemes of hlafs and simulation of heavy rainfall and clouds, Part I: Explicit cloud schemes. J Appl Meteor Sci, 2003, 14(Suppl Ⅰ): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1007.htm
    [28]
    Chen X J, Liu Q J, Ma Z S. A diagnostic study of cloud scheme for the GRAPES global forecast model. Acta Meteor Sinica, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htm
    [29]
    Pan L J, Zhang H F, Wang J P. Progress on verification methods of numerical weather prediction. Adv Earth Sci, 2014, 29(3): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201403005.htm
    [30]
    Koh T Y, Bhatt B C, Cheung K K W, et al. Using the spectral scaling exponent for validation of quantitative precipitation forecasts. Meteor Atmos Phys, 2012, 115: 35-45. doi:  10.1007/s00703-011-0166-4
    [31]
    Tiedtke M. Representation of clouds in large-scale models. Mon Wea Rev, 1993, 121(11): 3040-3061. doi:  10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
    [32]
    Li J L, Jiang J H, Waliser D E, et al. Assessing consistency between COS MLS and ECMWF analyzed and forecast estimates of cloud ice. Geophys Res Lett, 2007, 34(L08): L08701. http://www.onacademic.com/detail/journal_1000035772159510_f168.html
    [33]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [34]
    Illingworth A J, Hogan R J, Connor E J, et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull Amer Meteor Soc, 2007, 88(6): 883-898. doi:  10.1175/BAMS-88-6-883
    [35]
    Tao W K, Chern J D, Atlas R, et al. A multiscale modeling system developments, applications, and critical issues. Amer Meteor Soc, 2009, 90(4): 515-534. doi:  10.1175/2008BAMS2542.1
    [36]
    Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi:  10.11898/1001-7313.20210205
    [37]
    Tan C, Liu Q J, Ma Z S. Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteor Sinica, 2013, 71(5): 867-878. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305006.htm
    [38]
    Ma Z S, Liu Q J, Qin Y Y. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRAPES_GFS Model. Plateau Meteor, 2016, 35(4): 989-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604014.htm
    [39]
    Arbizu-Barrena C, Pozo-Vazquez D, Ruiz-Arias J A, et al. Macroscopic cloud properties in the WRF NWP model: An assessment using sky camera and ceilometer data. J Geophys Res Atmos, 2015, 120(19): 10297-10312. http://smartsearch.nstl.gov.cn/paper_detail.html?id=521dd00a8a280f9f1da41f1387a0c215
    [40]
    World Meteorological Organization/World Weather Research Programme (WMO/WWRP). Recommended Methods for Evaluating Cloud and Related Parameters World Weather Research Programme (WWRP)/Working Group on Numerical Experimentation (WGNE) Joint Working Group on Forecast Verification Research (JWGFVR), Document WWRP 2012-1, 2012.
    [41]
    Yuter S E, Houze J R R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 1995, 123(7): 1941-1963. doi:  10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
    [42]
    Morcrette J J. Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon Wea Rev, 1991, 119(5): 1205-1224. doi:  10.1175/1520-0493(1991)119<1205:EOMGCS>2.0.CO;2
    [43]
    Atger F. Verification of intense precipitation forecasts from single models and ensemble prediction systems. Nonlin Processes Geophys, 2001, 8(6): 401-417. doi:  10.5194/npg-8-401-2001
    [44]
    Casati B, Ross G, Stephenson D B. A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor Appl, 2004, 11(2): 141-154. doi:  10.1017/S1350482704001239
    [45]
    Keil C, Craig G C. A displacement-based error measure applied in a regional ensemble forecasting system. Mon Wea Rev, 2007, 135(9): 3248-3259. doi:  10.1175/MWR3457.1
    [46]
    Keil C, Craig G C. A displacement and amplitude score employing an optical flow technique. Wea Forecasting, 2009, 24(5): 1297-1308. doi:  10.1175/2009WAF2222247.1
    [47]
    Ferro C A T, Richardson D S, Weigel A P. On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteor Appl, 2008, 15(1): 19-24. doi:  10.1002/met.45
    [48]
    He G B, Zhang L B, Tu N N. Analyses on a heavy rainfall process prediction of regional numerical models. Plateau Mountain Meteor Res, 2014, 34(2): 1-7. doi:  10.3969/j.issn.1674-2184.2014.02.001
    [49]
    Xu J W, Gao Y H. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin. Plateau Meteor, 2014, 33(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404007.htm
    [50]
    Peng X D, Chang Y, Wang S G. Numerical validation of GRAPES model with two severe precipitation processes in 2008. Plateau Meteor, 2010, 29(2): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002008.htm
    [51]
    Zhang X W, Tang W Y, Zheng Y G, et al. Comprehensive evaluations of GRAPES_3 km numerical model in forecasting convective storms using various verification methods. Meteor Mon, 2020, 46(3): 367-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003008.htm
    [52]
    Xu S Z, Zhang B, Shen W. Forecasting verification of GRAPES model in the reaches of Changjiang River. Meteor Mon, 2007, 33(11): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200711011.htm
    [53]
    Ye C Z, Ouyang L C, Li X Y. Validation of 2005 heavy rain events over the Yangtze River Basin forecast by GRAPES. J Trop Meteor, 2006, 22(4): 393-399. doi:  10.3969/j.issn.1004-4965.2006.04.012
    [54]
    Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [55]
    Zhou Z G, Tan Z M, Zhang Y, et al. The impact of combination of model moist physics process on numerical simulation of a Nanjing heavy rainfall event. J Nanjing Univ(Nat Sci Ed), 2011, 47(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201104019.htm
    [56]
    Hu P, Zhao Z, Lei H C, et al. Numerical simulation of cloud system structure and precipitation mechanism of stratiform precipitation in spring of Henan Province. Plateau Meteor, 2009, 28(2): 374-384. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200902015.htm
    [57]
    Ma Z S, Liu Q J, Qin Y Y, et al. Verification of forecasting efficiency to cloud microphysical characters of mesoscale numerical model for artificial rainfall enhancement by using TRMM satellite data. Acta Meteor Sinica, 2009, 67(2): 260-271. doi:  10.3321/j.issn:0577-6619.2009.02.009
    [58]
    Sun J, Lou X F, Shi Y Q. The effects of different microphysical schemes on the simulation of a Meiyu front heavy rainfall. Acta Meteor Sinica, 2011, 69(5): 799-809. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105005.htm
    [59]
    Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J Meteor Res, 2015, 29(5): 806-822. doi:  10.1007/s13351-015-5043-5
    [60]
    Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in GRAPES Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi:  10.11898/1001-7313.20170105
    [61]
    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [62]
    Chen J, Ma Z S, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. doi:  10.1002/qj.3787
    [63]
    Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307
    [64]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 145(722): 1882-1896. http://www.researchgate.net/publication/341448930_The_ERA5_global_reanalysis
    [65]
    Ma Z, Liu Q, Zhao C, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J Adv Mod Earth Sys, 2018, 10(3): 652-667. doi:  10.1002/2017MS001234
    [66]
    Ma Z S, Zhao C, Gong C, et al. Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system. Geosci Model Dev, 2020, 14(1): 205-221. http://www.xueshufan.com/publication/3048719362
    [67]
    Liu S, Wang J J, Chen Q Y, et al. The main characteristics of forecast deviation in global precipitation by GRAPES_GFS. Acta Meteor Sinica, 2021, 79(2): 255-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102007.htm
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (1359) PDF downloads(181) Cited by()
    • Received : 2022-03-25
    • Accepted : 2022-06-30
    • Published : 2022-09-15

    /

    DownLoad:  Full-Size Img  PowerPoint