Citation: | Li Zhe, Chen Jiong, Ma Zhanshan, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. DOI: 10.11898/1001-7313.20220502. |
[1] |
Stephens G L.Cloud feedbacks in the climate system:A critical review.J Climate, 2005, 18(2):237-273. doi: 10.1175/JCLI-3243.1
|
[2] |
Morrison H, Gettelman A, Steven J G. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3(CAM3). Part Ⅱ: Single-column and global results. J Climate, 2008, 21(15): 3660-3679. doi: 10.1175/2008JCLI2116.1
|
[3] |
Hahn C J, Warren S G. A Gridded Climatology of Clouds over Land (1971-96) and Ocean (1954-97) from Surface Observations Worldwide. Numeric Data Package NDP-026E ORNL/CDIAC-153, CDIAC, Department of Enery, Oak Ridge, Tennessee, 2007.
|
[4] |
Stephens G L, Vane D G, Boain R J, et al. The cloudsat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull Amer Meteor Soc, 2002, 83(12): 1771-1790. doi: 10.1175/BAMS-83-12-1771
|
[5] |
Yin J F, Wang D H, Zhai G Q. A study of characteristics of the cloud microphysical parameterization schemes in mesoscale models and its applicability to China. Adv Earth Sci, 2014, 29(2): 238-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402005.htm
|
[6] |
Deng T, Zhang L, Chen M, et al. The influence of high cloud and aerosol radiative effect on boudary layer. Chinese J Atmos Sci, 2010, 34(5): 979-987. doi: 10.3878/j.issn.1006-9895.2010.05.12
|
[7] |
Wilson R J, Lewis S R, Montabone L, et al. Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys Res Lett, 2008, 35(7): L07202. doi: 10.1029/2007GL032405/pdf
|
[8] |
Gates W L, Boyle J S, Covey C, et al. An overview of the results of the atmospheric model intercomparison project (AMIPI). Bull Amer Meteor Soc, 1999, 80(1): 29-55. doi: 10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
|
[9] |
Jacob D, Van den Hurk B J J M, Andræ U, et al. A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP period. Meteor Atmos Phys, 2001, 77: 19-43. doi: 10.1007/s007030170015
|
[10] |
Klein S, Jakob C. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Wea Rev, 1999, 127(10): 2514-2531. doi: 10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
|
[11] |
Solomon S, Qin D, Manninget M, et al. Climiate Change 2007: The Physical Sciences Basis. Cambridge: Cambriged University Press, 2007.
|
[12] |
Cotton W R. Numerical simulation of precipitation development in supercooled cumuli-Part I. Mon Wea Rev, 1972, 100(11): 757-763. doi: 10.1175/1520-0493(1972)100<0757:NSOPDI>2.3.CO;2
|
[13] |
Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm. J Atmos Sci, 1977, 34(10): 1596-1618. doi: 10.1175/1520-0469(1977)034<1596:NSOTLH>2.0.CO;2
|
[14] |
Takahashi T. Hail in an axisymmetric cloud model. J Atmos Sci, 1976, 33(8): 1576-1601.
|
[15] |
Paluch I R. Size sorting of hail in a three-dimensional updraft and implications for hail suppression. J Appl Meteor, 1978, 17(6): 763-777. doi: 10.1175/1520-0450(1978)017<0763:SSOHIA>2.0.CO;2
|
[16] |
Raymond D J, Blyth A M. Precipitation development in a New Mexico thunderstorm. Quart J Roy Meteor Soc, 1989, 115(490): 1397-1423. doi: 10.1002/qj.49711549011
|
[17] |
Sokol Z, Zacharov P, Skripnikova K. Simulation of the storm on 15 August, 2010, using a high resolution COSMO NWP model. Atmos Res, 2014, 137: 100-111. doi: 10.1016/j.atmosres.2013.09.015
|
[18] |
Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev, 2004, 132(1): 103-120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
|
[19] |
Morrison H, Curry J A, Khvorostyanov V I. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅰ: Description. J Atmos Sci, 2005, 62(6): 1665-1677. doi: 10.1175/JAS3446.1
|
[20] |
Thompson G, Field P R, Rasmussen R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ: Implementation of a new snow parameterization. Mon Wea Rev, 2008, 136(12): 5095-5115. doi: 10.1175/2008MWR2387.1
|
[21] |
Lim K S S, Hong S Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Wea Rev, 2010, 138(5): 1587-1612. doi: 10.1175/2009MWR2968.1
|
[22] |
Hu Z J, Yan C F. Numerical simulation of microphysical processes in stratiform clouds (I)-Microphysical model. J Academy Meter Sci, 1986, 1(1): 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198601005.htm
|
[23] |
Hu Z J, Lou X F, Bao S W, et al. A simplifed explicit scheme of phase mixed cloud and precipitation. J Appl Meteor Sci, 1998, 9(3): 257-264. http://qikan.camscma.cn/article/id/19980338
|
[24] |
Xu H B, Duan Y. Some questions in studying the evolution of size distribution spectaum of hydrometeor paricels. Acta Meteor Sinica, 1999, 57(4): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199904005.htm
|
[25] |
Sun J, Lou X F, Hu Z J, et al. Numerical experiment of the coupling of CAMS complex microphysical scheme and GRAPES model. J Appl Meteor Sci, 2008, 19(3): 315-325. doi: 10.3969/j.issn.1001-7313.2008.03.007
|
[26] |
Hu Z J, He G F. Numerical simulation of micro processes in cumulonimbus clouds (I) microphysical model. Acta Meteor Sinica, 1987, 45(4): 467-484. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198704011.htm
|
[27] |
Liu Q J, Hu Z J, Zhou X J. Explicit cloud schemes of hlafs and simulation of heavy rainfall and clouds, Part I: Explicit cloud schemes. J Appl Meteor Sci, 2003, 14(Suppl Ⅰ): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1007.htm
|
[28] |
Chen X J, Liu Q J, Ma Z S. A diagnostic study of cloud scheme for the GRAPES global forecast model. Acta Meteor Sinica, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htm
|
[29] |
Pan L J, Zhang H F, Wang J P. Progress on verification methods of numerical weather prediction. Adv Earth Sci, 2014, 29(3): 327-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201403005.htm
|
[30] |
Koh T Y, Bhatt B C, Cheung K K W, et al. Using the spectral scaling exponent for validation of quantitative precipitation forecasts. Meteor Atmos Phys, 2012, 115: 35-45. doi: 10.1007/s00703-011-0166-4
|
[31] |
Tiedtke M. Representation of clouds in large-scale models. Mon Wea Rev, 1993, 121(11): 3040-3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2
|
[32] |
Li J L, Jiang J H, Waliser D E, et al. Assessing consistency between COS MLS and ECMWF analyzed and forecast estimates of cloud ice. Geophys Res Lett, 2007, 34(L08): L08701. http://www.onacademic.com/detail/journal_1000035772159510_f168.html
|
[33] |
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[34] |
Illingworth A J, Hogan R J, Connor E J, et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull Amer Meteor Soc, 2007, 88(6): 883-898. doi: 10.1175/BAMS-88-6-883
|
[35] |
Tao W K, Chern J D, Atlas R, et al. A multiscale modeling system developments, applications, and critical issues. Amer Meteor Soc, 2009, 90(4): 515-534. doi: 10.1175/2008BAMS2542.1
|
[36] |
Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205
|
[37] |
Tan C, Liu Q J, Ma Z S. Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteor Sinica, 2013, 71(5): 867-878. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305006.htm
|
[38] |
Ma Z S, Liu Q J, Qin Y Y. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRAPES_GFS Model. Plateau Meteor, 2016, 35(4): 989-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604014.htm
|
[39] |
Arbizu-Barrena C, Pozo-Vazquez D, Ruiz-Arias J A, et al. Macroscopic cloud properties in the WRF NWP model: An assessment using sky camera and ceilometer data. J Geophys Res Atmos, 2015, 120(19): 10297-10312. http://smartsearch.nstl.gov.cn/paper_detail.html?id=521dd00a8a280f9f1da41f1387a0c215
|
[40] |
World Meteorological Organization/World Weather Research Programme (WMO/WWRP). Recommended Methods for Evaluating Cloud and Related Parameters World Weather Research Programme (WWRP)/Working Group on Numerical Experimentation (WGNE) Joint Working Group on Forecast Verification Research (JWGFVR), Document WWRP 2012-1, 2012.
|
[41] |
Yuter S E, Houze J R R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 1995, 123(7): 1941-1963. doi: 10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
|
[42] |
Morcrette J J. Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon Wea Rev, 1991, 119(5): 1205-1224. doi: 10.1175/1520-0493(1991)119<1205:EOMGCS>2.0.CO;2
|
[43] |
Atger F. Verification of intense precipitation forecasts from single models and ensemble prediction systems. Nonlin Processes Geophys, 2001, 8(6): 401-417. doi: 10.5194/npg-8-401-2001
|
[44] |
Casati B, Ross G, Stephenson D B. A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteor Appl, 2004, 11(2): 141-154. doi: 10.1017/S1350482704001239
|
[45] |
Keil C, Craig G C. A displacement-based error measure applied in a regional ensemble forecasting system. Mon Wea Rev, 2007, 135(9): 3248-3259. doi: 10.1175/MWR3457.1
|
[46] |
Keil C, Craig G C. A displacement and amplitude score employing an optical flow technique. Wea Forecasting, 2009, 24(5): 1297-1308. doi: 10.1175/2009WAF2222247.1
|
[47] |
Ferro C A T, Richardson D S, Weigel A P. On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteor Appl, 2008, 15(1): 19-24. doi: 10.1002/met.45
|
[48] |
He G B, Zhang L B, Tu N N. Analyses on a heavy rainfall process prediction of regional numerical models. Plateau Mountain Meteor Res, 2014, 34(2): 1-7. doi: 10.3969/j.issn.1674-2184.2014.02.001
|
[49] |
Xu J W, Gao Y H. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin. Plateau Meteor, 2014, 33(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404007.htm
|
[50] |
Peng X D, Chang Y, Wang S G. Numerical validation of GRAPES model with two severe precipitation processes in 2008. Plateau Meteor, 2010, 29(2): 321-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002008.htm
|
[51] |
Zhang X W, Tang W Y, Zheng Y G, et al. Comprehensive evaluations of GRAPES_3 km numerical model in forecasting convective storms using various verification methods. Meteor Mon, 2020, 46(3): 367-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003008.htm
|
[52] |
Xu S Z, Zhang B, Shen W. Forecasting verification of GRAPES model in the reaches of Changjiang River. Meteor Mon, 2007, 33(11): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200711011.htm
|
[53] |
Ye C Z, Ouyang L C, Li X Y. Validation of 2005 heavy rain events over the Yangtze River Basin forecast by GRAPES. J Trop Meteor, 2006, 22(4): 393-399. doi: 10.3969/j.issn.1004-4965.2006.04.012
|
[54] |
Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405
|
[55] |
Zhou Z G, Tan Z M, Zhang Y, et al. The impact of combination of model moist physics process on numerical simulation of a Nanjing heavy rainfall event. J Nanjing Univ(Nat Sci Ed), 2011, 47(4): 481-492. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201104019.htm
|
[56] |
Hu P, Zhao Z, Lei H C, et al. Numerical simulation of cloud system structure and precipitation mechanism of stratiform precipitation in spring of Henan Province. Plateau Meteor, 2009, 28(2): 374-384. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200902015.htm
|
[57] |
Ma Z S, Liu Q J, Qin Y Y, et al. Verification of forecasting efficiency to cloud microphysical characters of mesoscale numerical model for artificial rainfall enhancement by using TRMM satellite data. Acta Meteor Sinica, 2009, 67(2): 260-271. doi: 10.3321/j.issn:0577-6619.2009.02.009
|
[58] |
Sun J, Lou X F, Shi Y Q. The effects of different microphysical schemes on the simulation of a Meiyu front heavy rainfall. Acta Meteor Sinica, 2011, 69(5): 799-809. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201105005.htm
|
[59] |
Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J Meteor Res, 2015, 29(5): 806-822. doi: 10.1007/s13351-015-5043-5
|
[60] |
Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in GRAPES Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi: 10.11898/1001-7313.20170105
|
[61] |
Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101
|
[62] |
Chen J, Ma Z S, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. doi: 10.1002/qj.3787
|
[63] |
Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307
|
[64] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 145(722): 1882-1896. http://www.researchgate.net/publication/341448930_The_ERA5_global_reanalysis
|
[65] |
Ma Z, Liu Q, Zhao C, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J Adv Mod Earth Sys, 2018, 10(3): 652-667. doi: 10.1002/2017MS001234
|
[66] |
Ma Z S, Zhao C, Gong C, et al. Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system. Geosci Model Dev, 2020, 14(1): 205-221. http://www.xueshufan.com/publication/3048719362
|
[67] |
Liu S, Wang J J, Chen Q Y, et al. The main characteristics of forecast deviation in global precipitation by GRAPES_GFS. Acta Meteor Sinica, 2021, 79(2): 255-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202102007.htm
|