Guo Anhong, Wang Chunzhi, Deng Huanhuan, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. DOI:  10.11898/1001-7313.20220503.
Citation: Guo Anhong, Wang Chunzhi, Deng Huanhuan, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. DOI:  10.11898/1001-7313.20220503.

Atmospheric Dynamics Analysis and Simulation of the Migration of Fall Armyworm

DOI: 10.11898/1001-7313.20220503
  • Received Date: 2022-05-17
  • Rev Recd Date: 2022-06-23
  • Publish Date: 2022-09-15
  • After the invasion of fall armyworm (Spodoptera frugiperda) in China at the end of 2018 or at the beginning of 2019, it spreads rapidly and becomes a seasonal migrating pest that seriously threatens the maize production in China. The long-distance migration of adult fall armyworm is closely related to the seasonal changes of atmospheric circulation in East Asia. The atmospheric circulation and low layer wind dynamic condition that influence the migration of fall armyworm in 2019-2021 are analyzed, and 4 typical weather processes beneficial to the migration are selected to simulate the migration path and landing point with Hybrid Single-particle Lagrangian Integrated Trajactory(HYSPLIT) model. The results show that, during the northward migration of fall armyworm in spring and summer, the strength of the southwest airflow is different due to the varying strength, location and westward extension of the Northwestern Pacific subtropical high(WPSH) in each year, and therefore the low layer wind driving the migration of fall armyworm to transition region and main corn planting area is different. The earlier onset of the South China Sea summer monsoon in May of 2019 is conducive to the early migration from South China into the middle and lower reaches of the Yangtze. June is a key stage for the fall armyworm migration to northern summer maize area, and further spreading to the spring maize area in North China. The west ridge point positions of WPSH from June to July varies in different year, and leads to different northernmost landing position of the pests, which is attributed to the south airflow carrying fall armyworm on the western side of the WPSH. The dynamic conditions of low layer wind during August to September are different in 2019-2021, which vital to the migration to main spring maize producing areas in Northeast China. In 4 simulation cases, 3-weather-process simulations are effectively monitored and verified, indicating the migration path and landing point of fall armyworm. However, in January of 2022, there are some misreports landing point in Guizhou and Fujian, though the southwest low level jet is favorable. HYSPLIT model is effective in the flight trajectory simulation, but it has some uncertainty in the migration distance, time and landing point due to biological characteristics, topography, microclimate, etc. In future, the simulation model should be improved by combination of real-time radar monitoring and other means.
  • Fig. 1  Simulated migration trajectory of fall armyworm from Yunnan, Guangxi, Guangdong, Hunan, Jiangxi and Guizhou from 13 May to 15 May in 2021

    Fig. 2  Increased number of counties in ten days that observed adult and larvae of fall armyworm on 20 May and 30 May in 2021

    Fig. 3  Simulated migration trajectory of fall armyworm from central Hebei and Shandong Peninsula from 7 Sep to 9 Sep in 2021

    Fig. 4  Simulated migration trajectory of fall armyworm from Hebei, Henan, and Shaanxi from 5 Sep to 7 Sep in 2021

    Fig. 5  Monitoring of fall armyworm adult at Songzi and Yunmeng stations of Hubei in 2021

    Fig. 6  Simulated migration trajectory of fall armyworm from Yunnan, Guangxi, Guangdong of China and foreign countries during low-level jet process from 26 Jan to 28 Jan in 2022

  • [1]
    Luginbill P.The fall armyworm.USDA Technology Bulletin.1928, 34:91.
    [2]
    Sparks A N. A review of the biology of the fall armyworm. Fla Entomol, 1979, 62(2): 82-87. doi:  10.2307/3494083
    [3]
    Jiang Y Y, Liu J, Xie M C, et al. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protect, 2019, 45(6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201906002.htm
    [4]
    Jiang Y Y, Liu J, Zhu X M. Analysis of the occurrence dynamics and future trend of Spodoptera frugiperda in China. China Plant Protect, 2019, 39(2): 33-35. doi:  10.3969/j.issn.1672-6820.2019.02.006
    [5]
    Chen H, Yang X L, Chen A D, et al. Immigration timing and origin of the first fall armyworms(Spodoptera frugiperda) detected in China. Chinese J Appl Entomol, 2020, 57(6): 1270-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202006005.htm
    [6]
    Chen H, Wu M F, Liu J, et al. Migratory routes and occurrence divisions of the fall armyworm Spodoptera frugiperda in China. J Plant Protect, 2020, 47(4): 747-757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202004009.htm
    [7]
    Wu Q L, Jiang Y Y, Hu G, et al. Analysis on spring and summer migration routes of fall armyworm(Spodoptera frugiperda) from tropical and southern subtropical zones of China. Plant Protect, 2019, 45(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201903002.htm
    [8]
    Bao Y X, Huang J Y, Xie X J, et al. Influence of monsoon's advancing, retreating and conversion on migrations of Nilaparvata lugens(Stål) in China. Acta Ecol Sinica, 2013, 33(16): 4864-4877. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201316006.htm
    [9]
    Bao Y X, Wang M F, Chen C, et al. Impact of East Asian summer monsoon advancing and retreating on occurrence of Cnaphalocrocis medinalis Guenée in the main rice-growing regions of south China. Acta Ecol Sinica, 2019, 39(24): 9351-9364. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201924032.htm
    [10]
    Zhao S J. Relation between long-distance migration of the oriental armyworm and the seasonal variation of the general circulation over East Asia. Acta Ecol Sinica, 1981, 1(4): 315-326. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB198104002.htm
    [11]
    Liu Y Y, Li W J, Ai W X, et al. Reconstruction and application of the monthly Western Pacific subtropical high indices. J Appl Meteor Sci, 2012, 23(4): 414-423. doi:  10.3969/j.issn.1001-7313.2012.04.004
    [12]
    Wu K M, Yang X M, Zhao S Y, et al. Prevention and Control Manual of Spodoptera frugiperda. Beijing: China Agricultural Science and Technology Press, 2020.
    [13]
    Ma Y F, Lu H, Liu H T. Trajectory calculation error assessment for HYSPLIT. Journal of Nanjing University of Information Science & Technology(Nat Sci Ed), 2015, 7(1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ201501011.htm
    [14]
    Draxler R R. Boundary layer isentropic and kinematic trajectories during the August 1993 North Atlantic regional experiment intensive. J Geophys Res, 1996, 101(D22): 29255-29268. doi:  10.1029/95JD03760
    [15]
    Draxler R R, Hess G D. An overview of the HYSPLIT 4 modeling system for trajectories, dispersion, and deposition. Aust Meteor Mag, 1998, 47: 295-308.
    [16]
    Escudero M, Stein A, Draxler R R, et al. Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model(HYSPLIT). J Geophys Res Atmos, 2006, 111(D6). DOI: 10.1029/2005JD006395.
    [17]
    Rolph G D, Draxler R R, de Pena R G. Modeling sulfur concentrations and depositions in the United States during ANATEX. Atmos Environ, 1992, 26(1): 73-93. doi:  10.1016/0960-1686(92)90262-J
    [18]
    Raxler R R. Meteorological factors of ozone predictability at Houston, Texas. J Air Waste Manag Assoc, 2000, 50(2): 259-271. doi:  10.1080/10473289.2000.10463999
    [19]
    Huang J, Liu Z T, Huang M H, et al. The seasonal characteristics of regional atmospheric transport and dispersion over the Pearl River Delta. J Appl Meteor Sci, 2010, 21(6): 698-708. doi:  10.3969/j.issn.1001-7313.2010.06.006
    [20]
    Lu F, Zhai B P, Hu G. Trajectory analysis methods for insect migration research. Chinese J Appl Entomol, 2013, 50(3): 853-862. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201303040.htm
    [21]
    Yu Z X, Wu Y Q, Jiang Y L, et al. Forward trajectory analysis of wheat aphids during long-distance migration using HYSPLIT model. Acta Ecol Sinica, 2011, 31(3): 889-894. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103035.htm
    [22]
    Bao Y X, Sun M Q, Yan M L, et al. Comparative study of migration trajectories of the brown planthopper, Nilaparvata lugens(Stål), in China based on two trajectory models. Acta Ecol Sinica, 2016, 36(19): 6122-6138. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201619015.htm
    [23]
    Li K B, Du G Q, Yin J, et al. Monitoring the migration of Sitobion avenae(Fabricius) by suction trapping. Chinese J Appl Entomol, 2014, 51(6): 1504-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201406012.htm
    [24]
    Wolf W W, Westbrook J K, Raulston J, et al. Radar observation of orientation of noctuids migrating from corn fields in the Lower Rio Grande Valley. Southwest Entomol, 1995, 18(Suppl I): 45-61.
    [25]
    Zhao L C, Liao Y X, Chen Z M. Impacts of temperatures on the growth and development of larvae and pupae of Spodoptera frugiperda. Journal of Natural Science of Hunan Normal University, 2020, 43(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ202001007.htm
    [26]
    He L M, Ge S S, Chen Y C, et al. The developmental threshold temperature, effective accumulated temperature and prediction model of developmental duration of fall armyworm, Spodotera frugiperda. Plant Protect, 2019, 45(5): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201905005.htm
    [27]
    Feng C H, Zhai B P, Zhang X X, et al. Climatology of low-level jet and northward migration of rice planthoppers. Acta Ecol Sinica, 2002, 22(4): 559-565. doi:  10.3321/j.issn:1000-0933.2002.04.017
    [28]
    Qi G J, Ma J, Hu G, et al. Analysis of migratory routes and atmospheric features of the newly invaded fall armyworm, Spodoptera frugiperda(J.E. Smith) in Guangdong Province. J Environ Entomol, 2019, 41(3): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-KCTD201903008.htm
    [29]
    Bao Y X, Xie J, Xiang Y, et al. Influence of low-level jets on the great events of BPH's migration northward in China. Acta Ecol Sinica, 2009, 29(11): 5773-5782. doi:  10.3321/j.issn:1000-0933.2009.11.004
    [30]
    Zhai B P. Tracking angels: 30 years of radar entomolgy. Acta Entomol Sinica, 1999, 42(3): 315-326. doi:  10.3321/j.issn:0454-6296.1999.03.016
    [31]
    Wolf W W, Westbrook J K, Raulston J, et al. Recent airborne radar observations of migrant pests in the United States. Phil Trans R Soc Lond, 1990, 328(1251): 619-630.
    [32]
    China Meteorological Administration. China Climate Bulletin. 2019: 24-27.
    [33]
    China Meteorological Administration. China Climate Bulletin. 2020: 24-27.
    [34]
    China Meteorological Administration. China Climate Bulletin. 2021: 23-28.
    [35]
    Qian S, Huo Z G. Influences of atmospheric circulation on the occurrence and development of rice planthopper in China and its occurrence area prediction. Acta Meteor Sinica, 2007, 65(6): 994-1001. doi:  10.3321/j.issn:0577-6619.2007.06.017
    [36]
    Wang C Z, Zhang L, Guo A H, et al. Long-term meteorological prediction model on the occurrence and development of rice leaf roller based on atmospheric circulation. J Appl Meteor Sci, 2019, 30(5): 565-576. doi:  10.11898/1001-7313.20190505
    [37]
    Hou T T, Huo Z G, Li S K, et al. Causes of meteorological environment influencing on migration of rice planthopper. J Nat Disaster, 2003, 12(3): 142-148. doi:  10.3969/j.issn.1004-4574.2003.03.023
    [38]
    Hou T T, Huo Z G, Lu Z G, et al. Relationship between subtropical high and occurrence of rice planthopper. J Nat Disaster, 2003, 12(2): 213-219.
    [39]
    Huo Z G, Chen L, Ye C L, et al. Effect of climate on outbreak of China rice planthopper. J Nat Disaster, 2002, 11(1): 97-102. doi:  10.3969/j.issn.1004-4574.2002.01.016
    [40]
    Bao Y X, Cao Y, Xie X J, et al. Migration pattern of rice leaf roller and impact of atmospheric conditions on a heavy migration event in China. Acta Ecol Sinica, 2015, 35(11): 3519-3533. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201511003.htm
    [41]
    Yu C X, Huo Z G, Zhang L, et al. Leading indicators of atmospheric circulation characteristics on rice planthopper occurrence in China. Chinese J Ecology, 2014, 33(4): 1053-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201404030.htm
    [42]
    Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. doi:  10.11898/1001-7313.20190309
    [43]
    Wang Y, Zhang Q, Gu X H, et al. Summer precipitation in the Huaihe River Basins and relevant climate indices. J Appl Meteor Sci, 2016, 27(1): 67-74. doi:  10.11898/1001-7313.20160107
    [44]
    Zhang L, Yang B Y, Li S, et al. Disease-weather relationships for wheat powdery mildew under climate change in China. The Journal of Agricultural Science, 2017, 155: 1239-1252.
    [45]
    Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31(3): 280-289. doi:  10.11898/1001-7313.20200303
    [46]
    Zhang L, Guo A H, Wang C Z. Climatic risk assessment of wheat powdery mildew in China. Chinese J Ecology, 2016, 35(5): 1330-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201605029.htm
    [47]
    Hou Y Y, Zhang L, Wu M X, et al. Advances of modern agrometeorological service and technology in China. J Appl Meteor Sci, 2018, 29(6): 641-656. doi:  10.11898/1001-7313.20180601
    [48]
    Drake V A, Wang H K, Harman I T. Insect monitoring radar: Remote and network operation. Comput Electron Agric, 2002, 35(2/3): 77-94.
    [49]
    Drake V A, Reynolds D R. Radar entomology: Observing insect flight and migration. Radar Entomology Observing Insect Flight & Migration, 2012, 27(2): 282-311.
    [50]
    Jiang Y Y. Research and application prospect of radar monitoring of crop migratory pests. China Plant Protect, 2006, 26(4): 17-18. doi:  10.3969/j.issn.1672-6820.2006.04.006
    [51]
    Sun W, Cheng Z J, Gao Y B, et al. The autumn migration of the third generation armyworm Mythimna separata(Walker): Radar observations and trajectory analysis. Chinese J Appl Entomol, 2018, 55(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201802004.htm
    [52]
    Wang R, Zhang F, Hu C, et al. Recent developments in radar technology that allow the identification of migratory insects. Chinese J Appl Entomol, 2021, 58(3): 565-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103009.htm
    [53]
    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101
    [54]
    Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi:  10.11898/1001-7313.20200607
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (1082) PDF downloads(100) Cited by()
    • Received : 2022-05-17
    • Accepted : 2022-06-23
    • Published : 2022-09-15

    /

    DownLoad:  Full-Size Img  PowerPoint