仪器名称 | 设备功能 | 测量范围 | 精度 |
云粒子探头 | 测量云滴粒子 | 2~50 μm | 1~12通道:1 μm;13~30通道:2 μm |
综合气象要素测量系统 | 测量温度,风速,风向,经纬度,海拔 | 海拔:0~15 km温度:-20~+40℃ | 测温:0.05℃;风速:0.5 m·s-1 |
总水含量仪 | 测量液态水含量,总水含量 | 0~10 g·m-3 | 0.001 g·m-3 |
Citation: | Wang Zelin, Zhou Xu, Wu Junhui, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. DOI: 10.11898/1001-7313.20220504. |
Fig. 4 Distribution of liquid water content at 0900 BT 28 Feb 2021
(the black denotes terrain;the purple box denotes the area of severe icing;the colour shaded denotes the liquid water content;the red dashed line denotes the isotherm, unit:℃;the black dashed line denotes vertical velocity, unit:Pa·s-1)
(a)the zonal section along 36.25°N, (b)the meridional section along 111.25°E
Table 1 Airborne instrumentations and main parameters
仪器名称 | 设备功能 | 测量范围 | 精度 |
云粒子探头 | 测量云滴粒子 | 2~50 μm | 1~12通道:1 μm;13~30通道:2 μm |
综合气象要素测量系统 | 测量温度,风速,风向,经纬度,海拔 | 海拔:0~15 km温度:-20~+40℃ | 测温:0.05℃;风速:0.5 m·s-1 |
总水含量仪 | 测量液态水含量,总水含量 | 0~10 g·m-3 | 0.001 g·m-3 |
[1] |
Gultepe I, Sharman R, Williams P D, et al. A review of high impact weather for aviation meteorology. Pure Appl Geophys, 2019, 176(5): 1869-1921. doi: 10.1007/s00024-019-02168-6
|
[2] |
Federal Aviation Administration, Federal Aviation Regulations(FAR). Part 25: Airworthiness Standards: Transport Category Airplanes. FAA, 2017.
|
[3] |
Civil Aviation Administration of China. CCAR 25-R4: Chinese Civil Aviation Regulation No. 25: Airworthiness Standards for Transport Aircraft Beijing: Civil Aviation Administration of China, 2011.
|
[4] |
Marwitz J. Comments on "characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification". J Appl Meteor Climatol, 2013, 52(7): 1670-1672. doi: 10.1175/JAMC-D-12-096.1
|
[5] |
Schack C J, Christe K O. Forecasters' Guide on Aircraft Icing. Air Weather Service Rep, AWS/TR-80/001, 1980: 1-58.
|
[6] |
Li Z L. Analysis of meteorological conditions for aircraft icing. J Sichuan Meteor, 1999, 9(3): 56-57. doi: 10.3969/j.issn.1674-2184.1999.03.015
|
[7] |
Pang Z Y, Zhang Y X. Weather conditions of aircraft icing in the middle part of Gansu Province. Arid Meteor, 2008, 26(3): 53-56. doi: 10.3969/j.issn.1006-7639.2008.03.010
|
[8] |
Liu K Y, Shen H X, Li X L, et al. Analysis of an aircraft icing event in Taiyuan airport. Meteor Mon, 2005, 31(12): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512004.htm
|
[9] |
Chi Z P. Statistical analysis and numerical prediction experiment of weather conditions for aircraft icing. Meteor Sci Technol, 2007, 35(5): 714-718. doi: 10.3969/j.issn.1671-6345.2007.05.021
|
[10] |
Rasmussen R, Politovich M, Marwitz J, et al. Winter Icing and Storms Project(WISP). Bull Amer Meteor Soc, 1992, 73(7): 951-976. doi: 10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2
|
[11] |
Cober S G, Isaac G A, Strapp J W. Aircraft icing measurements in east coast winter storms. J Appl Meteor Climatol, 1995, 34(1): 88-100. doi: 10.1175/1520-0450-34.1.88
|
[12] |
Miller D, Bernstein B, McDonough B, et al. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research-Summary of Winter 96-97 Flight Operations//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998. DOI: 10.2514/6.1998-577.
|
[13] |
Isaac G A, Cober S G, Strapp J W, et al. Recent Canadian research on aircraft in-flight icing. Can Aeronaut Space J, 2001, 47(3): 213-221.
|
[14] |
Isaac G, Cober S, Strapp J, et al. Preliminary Results from the Alliance Icing Research Study(Airs)//39th Aerospace Sciences Meeting and Exhibit, 2001. DOI: 10.2514/6.2001-393.
|
[15] |
Isaac G, Ayers J, Bailey M, et al. First Results from the Alliance Icing Research Study Ⅱ//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005. DOI: 10.2514/6.2005-252.
|
[16] |
Bernstein B C, Wolff C A, McDonough F. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅰ: Canada and the continental United States. J Appl Meteor Climatol, 2007, 46(11): 1857-1878. doi: 10.1175/2007JAMC1607.1
|
[17] |
Bernstein B C, Le Bot C. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅱ: Europe, Asia, and the globe. J Appl Meteor Climatol, 2009, 48(8): 1503-1526. doi: 10.1175/2009JAMC2073.1
|
[18] |
Bernstein B, Campo W, Algodal L, et al. The Embraer-170 and -190 Natural Icing Flight Campaigns: Keys to Success//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006. DOI: 10.2514/6.2006-264.
|
[19] |
DiVito S, Bernstein B C, Sims D L, et al. In-cloud Icing and Large-drop Experiment(ICICLE). Part Ⅰ: Overview//100th American Meteorological Society Annual Meeting. AMS, 2020. DOI: 10.21949/1524472.
|
[20] |
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[21] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[22] |
Liu X L, Zhang Y, Liu D S. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. doi: 10.11898/1001-7313.20210609
|
[23] |
Li H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm
|
[24] |
Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi: 10.11898/1001-7313.20210608
|
[25] |
Zhang R, Zhou X, Li H Y, et al. Revisiting the size of nonspherical particles recorded by optical array probes with a new method based on the convex hull. Atmos Ocean Sci Lett, 2022, 15(3): 100136. doi: 10.1016/j.aosl.2021.100136
|
[26] |
Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202
|
[27] |
Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604
|
[28] |
Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605
|
[29] |
Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607
|
[30] |
Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
|
[31] |
Zhu S C, Guo X L. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements. Acta Meteor Sinica, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm
|
[32] |
Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm
|
[33] |
Chen Y, Ma P M, You L G. A case study of droplet spectra and liquid water content measurements in aircraft icing environments. Meteor Mon, 1989, 15(4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198904006.htm
|
[34] |
Li Q H, Qiao J J, Chen Z J. Natural icing flight test for Y7-200a aircraft. Fligh Dynam, 1999, 17(2): 64-69. doi: 10.3969/j.issn.1002-0853.1999.02.012
|
[35] |
Wang Z L, Ni H B, Pei C C. A case study of helicopter natural icing flight test in arid areas of China. Desert Oasis Meteor, 2020, 14(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002009.htm
|
[36] |
Sun J, Cai M, Wang F, et al. A case study of aircraft icing conditions in Anqing area. Meteor Mon, 2019, 45(10): 1341-1351. doi: 10.7519/j.issn.1000-0526.2019.10.001
|
[37] |
Che Y, Zhang J, Fang C, et al. Aerosol and cloud properties over a coastal area from aircraft observations in Zhejiang, China. Atmos Environ, 2021, 267: 118771. doi: 10.1016/j.atmosenv.2021.118771
|
[38] |
Cai Z X, Cai M, Li P R, et al. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China. Chinese J Atmos Sci, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm
|
[39] |
Poore K D, Wang J, Rossow W B. Cloud layer thicknesses from a combination of surface and upper-air observations. J Climate, 1995, 8(3): 550-568. doi: 10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2
|
[40] |
Bernstein B C, Rasmussen R M, McDonough F, et al. Keys to differentiating between small- and large-drop icing conditions in continental clouds. J Appl Meteor Climatol, 2019, 58(9): 1931-1953. doi: 10.1175/JAMC-D-18-0038.1
|
[41] |
Wolff C, Mcdonough F, Bernstein B. An Examination of Aircraft Icing Conditions Associated with Cold Fronts. SAE Technical Paper, 2011-38-0020, 2011.
|
[42] |
Wang L J, Yin Y, Li L G, et al. Analyses on typical autumn multi-layer stratiform clouds over the Sanjiangyuan National Nature Reserve with airborne observations. Chinese J Atmos Sci, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htm
|
[43] |
Jeck R K. A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions. Flight Control Systems, 2001.
|
[44] |
Jeck R. A Workable, Aircraft-specific Icing Severity Scheme//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, DOI: 10.2514/6.1998-94.
|