[1]
|
|
[2]
|
Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[3]
|
Shakti P C, Maki M, Shimizu S, et al. Correction of reflectivity in the presence of partial beam blockage over a mountainous region using X-band dual polarization radar. J Hydrometeor, 2013, 14(3): 744-764. doi: 10.1175/JHM-D-12-077.1
|
[4]
|
Germann U, Galli G, Boscacci M, et al. Radar precipitation measurement in a mountainous region. Quart J Roy Meteor Soc, 2006, 132(618): 1669-1692. doi: 10.1256/qj.05.190
|
[5]
|
|
[6]
|
Tabary P. The new French operational radar rainfall product. Part Ⅰ: Methodology. Wea Forecasting, 2007, 22(3): 393-408. doi: 10.1175/WAF1004.1
|
[7]
|
Battan L J. Radar Observation of the Atmosphere. Chicago: The University of Chicago Press, 1973.
|
[8]
|
Luo L, Jing G F, Guo J, et al. Study on weather radar echo block correction technology of Beijing Meteorological Bureau. Sci Technol Eng, 2016, 16(12): 12-19. doi: 10.3969/j.issn.1671-1815.2016.12.003
|
[9]
|
Lee J, Jung S H, Kim H L, et al. Improved rainfall estimation based on corrected radar reflectivity in partial beam blockage area of S-band dual-polarization radar. Korean Meteor Soc, 2017, 27(4): 467-481.
|
[10]
|
|
[11]
|
Andrieu H, Creutin J D, Delrieu G, et al. Use of a weather radar for the hydrology of a mountainous area. Part Ⅰ: Radar measurement interpretation. J Hydrol, 1997, 193: 1-25. doi: 10.1016/S0022-1694(96)03202-7
|
[12]
|
Creutin J D, Andrieu H, Faure D. Use of a weather radar for the hydrology of a mountainous area. Part Ⅱ: Radar measurement validation. J Hydrol, 1997, 193: 26-44. doi: 10.1016/S0022-1694(96)03203-9
|
[13]
|
Yang L, Liu L P, Wang H Y. Filling-up of occultation regions using vertical profile of reflectivity factor. Meteor Sci Technol, 2015, 43(5): 788-793. doi: 10.3969/j.issn.1671-6345.2015.05.003
|
[14]
|
Ryzhkov A V, Giangrande S E, Melnikov V M, et al. Calibration issues of dual-polarization radar measurements. J Atmos Oceanic Technol, 2005, 22(8): 1138-1155. doi: 10.1175/JTECH1772.1
|
[15]
|
Lang T J, Nesbitt S W, Carey L D. On the correction of partial beam blockage in polarimetric radar data. J Atmos Oceanic Technol, 2009, 26(5): 943-957. doi: 10.1175/2008JTECHA1133.1
|
[16]
|
Zhang P, Zrnic D, Ryzhkov A. Partial beam blockage correction using polarimetric radar measurements. J Atmos Oceanic Technol, 2013, 30(5): 861-872. doi: 10.1175/JTECH-D-12-00075.1
|
[17]
|
Cai J Q, Tan G R, Niu R Y. Circulation pattern classification of persistent heavy rainfall in Jianghuai Region based on the transfer learning CNN model. J Appl Meteor Sci, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208
|
[18]
|
Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[19]
|
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi: 10.11898/1001-7313.20220301
|
[20]
|
Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi: 10.11898/1001-7313.20210506
|
[21]
|
Chen H, Chandrasekar V, Tan H, et al. Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks. Geophys Res Lett, 2019, 46(17/18): 10669-10678.
|
[22]
|
|
[23]
|
Singh S, Sarkar S, Mitra P. A Deep Learning Based Approach with Adversarial Regularization for Doppler Weather Radar ECHO Prediction. 2017 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2017: 5205-5208.
|
[24]
|
Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106
|
[25]
|
Yin X Y, Hu Z Q, Zheng J F, et al. Study on radar echo-filling in an occlusion area by a deep learning algorithm. Remote Sens, 2021, 13(9): 1779. doi: 10.3390/rs13091779
|
[26]
|
Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109
|
[27]
|
|
[28]
|
|
[29]
|
|
[30]
|
Chao X J. Prediction and Application of Fuzzy Time Series in Drilling Risk Probability. Chengdu: Southwest Petroleum University, 2018.
|
[31]
|
Wang H Y. Assessment of Coverage Ability and Research of Methods for Regional Mosaic QPE of CINRAD. Beijing: Chinese Academy of Meteorological Sciences, 2015.
|
[32]
|
LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 11(4): 541-551.
|
[33]
|
|