Ma Qiang, Yan Jinghui, Wei Min, et al. Implementation and application of BCC CMIP6 Experimental Data Sharing Platform. J Appl Meteor Sci, 2022, 33(5): 617-627. DOI:  10.11898/1001-7313.20220509.
Citation: Ma Qiang, Yan Jinghui, Wei Min, et al. Implementation and application of BCC CMIP6 Experimental Data Sharing Platform. J Appl Meteor Sci, 2022, 33(5): 617-627. DOI:  10.11898/1001-7313.20220509.

Implementation and Application of BCC CMIP6 Experimental Data Sharing Platform

DOI: 10.11898/1001-7313.20220509
  • Received Date: 2022-03-31
  • Rev Recd Date: 2022-07-01
  • Publish Date: 2022-09-15
  • The experimental data of ongoing CMIP6 (Coupled Model Intercomparison Project Phase 6) are widely used to study the mechanism of climate change and provide technical support for the assessment report of the Intergovernmental Panel on Climate Change (IPCC). With more types of model experiments and more complex climate model, the amount of CMIP experimental data are also increasing rapidly. Therefore, Beijing Climate Center (BCC) has established Earth System Grid Federation (ESGF) data node to share experimental data of BCC CMIP6.BCC has three latest versions of models to participate in the project through model development in recent years. The hardware of the platform adopts a distributed storage architecture and is deployed in the demilitarized zone (DMZ) of China Meteorological Administration, which provides a strong guarantee for its network access rate and security. The data processing module mainly checks the integrity, processes the original model output and adopts the climate model output rewriter (CMOR) software to standardize the format. Thematic real-time environmental distributed data services data server is used for local storage management and data sharing, publishing metadata to ESGF index node for unified data retrieval. The data storage directory adopts hierarchical management structure with self-describing information to realize hierarchical and classified storage of different elements in different experiments. To ensure the security of data sharing, the platform is optimized based on ESGF security framework in addition to physically adding replica storage, and the needs of easy access are also considered.Totally, 190 TB experimental data of BCC CMIP6 have been released and shared since the establishment of the platform. The platform has provided important technical support for BCC to participate in the CMIP6, and it has also supported scientific research in the fields of climate change simulation and prediction, weather and climate extremes, global warming and human activities.Subsequent work will provide continuous data services to the CMIP and can be extended to other related model comparison programs. It is also important to further improve the capabilities of customized data sharing services.
  • Fig. 1  Platform system architecture

    Fig. 2  Platform construction workflow

    Fig. 3  Data processing workflow

    Fig. 4  BCC CMIP6 data publishing and service

    Fig. 5  BCC CMIP6 data access statistics in the first half of 2022

    Table  1  BCC model versions participated in CMIP6

    模式 分量 模式版本 分辨率
    BCC-ESM1.0[8] 大气 BCC-AGCM3-Chem T42L26(约为280 km,水平格点数为128×64,垂直分26层,模式顶为2.19 hPa)
    陆面 BCC-AVIM2 T42(约为280 km,水平格点数为128×64)
    海洋 MOM4-L40v3 gx1v1(纬向分辨率为1°,经向在10°S~10°N加密到(1/3)°,10°S~30°S和10°N~30°N由(1/3)°逐渐过渡到1°,30°S以南、30°N以北区域为1°,水平格点数为360×232,垂直分40层)
    海冰 SIS gx1v1(水平分辨率与MOM4-L40v3相同)
    BCC-CSM2-MR[9] 大气 BCC-AGCM3-MR T106L46(约为110 km,水平格点数为320×160,垂直分46层,模式顶为1.46 hPa)
    陆面 BCC-AVIM2 T106(约为110 km,水平格点数为320×160)
    海洋 MOM4-L40v3 同BCC-ESM1.0
    海冰 SIS 同BCC-ESM1.0
    BCC-CSM2-HR[10] 大气 BCC-AGCM3-HR T266L56(约为45 km,水平格点数为800×400,垂直分56层,模式顶为0.1 hPa)
    陆面 BCC-AVIM2 T266(约为45 km,水平格点数为800×400)
    海洋 MOM5-L50 0.25°×0.25°(水平格点数为1440×688,垂直分50层)
    海冰 SIS 0.25°×0.25°(水平格点数为1440×688)
    DownLoad: Download CSV

    Table  2  BCC CMIP6 data

    核心试验/子计划 试验名称 模式 样本量 要素数量 数据量/TB
    气候诊断、评估和描述试验(DECK)[2] 1pctCO2 BCC-CSM2-MR 1 142 29.00
    BCC-ESM1.0 1 179
    abrupt-4xCO2 BCC-CSM2-MR 1 142
    BCC-ESM1.0 1 169
    amip BCC-CSM2-MR 3 97
    BCC-ESM1.0 3 134
    esm-hist BCC-CSM2-MR 3 155
    esm-piControl BCC-CSM2-MR 1 143
    气候诊断、评估和描述试验(DECK)[2] piControl BCC-CSM2-MR 1 142 32.00
    BCC-ESM1.0 1 168
    历史气候模拟试验(Historical)[2] Historical BCC-CSM2-MR 3 154
    BCC-ESM1.0 3 189
    检测归因模式比较计划(DAMIP)[27] hist-GHG BCC-CSM2-MR 3 149 6.50
    hist-aer 3 144
    hist-nat 3 145
    情景模式比较计划(ScenarioMIP)[28] SSP1-2.6 BCC-CSM2-MR 1 154 26.00
    SSP2-4.5 1 153
    SSP3-7.0 1 158
    SSP5-8.5 1 154
    耦合气候碳循环比较计划(C4MIP)[29] 1pctCO2-bgc BCC-CSM2-MR 1 144 7.40
    1pctCO2-rad 1 144
    esm-ssp585 1 155
    全球季风模式比较计划(GMMIP)[30] amip-hist BCC-CSM2-MR 1 74 2.50
    hist-resAMO 1 130
    云反馈模式比较计划(CFMIP)[31] amip BCC-CSM2-MR 1 113 29.00
    amip-4xCO2 1 115
    amip-future4K 1 114
    amip-m4K 1 114
    amip-p4k 1 118
    陆面、雪和土壤湿度模式比较计划(LS3MIP)[32] Land-Hist-princeton BCC-CSM2-MR 1 40 0.01
    土地利用模式比较计划(LUMIP)[33] deforest-globe BCC-CSM2-MR 1 147 2.00
    esm-ssp585-sspl26Lu 1 147
    hist-nolu 1 146
    land-hist 1 40
    land-nolu 1 40
    sspl26-ssp370Lu 1 147
    ssp370-sspl26Lu 1 147
    气溶胶和化学模式比较计划(AerChemMIP)[11] hist-piAer BCC-ESM1.0 3 186 4.10
    hist-piNTCF 3 179
    histSST 1 121
    histSST-piCH4 1 120
    histSST-piNTCF 1 120
    piClim-BC 1 123
    piClim-CH4 1 119
    piClim-NOx 1 123
    piClim-NTCF 1 120
    piClim-O3 1 123
    piClim-SO2 1 123
    piClim-VOC 1 123
    piClim-aer 1 123
    piClim-control 1 119
    ssp370 3 187
    ssp370-lowNTCF 3 182
    ssp370SST 1 121
    ssp370SST-lowNTCF 1 121
    年代际气候预测计划(DCPP)[13] dcppA-hindcast BCC-CSM2-MR 8 74 9.07
    高分辨率模式比较计划(HighResMIP)[12] control-1950 BCC-CSM2-HR 1 113 70.00
    highresSST-present 1 97
    hist-1950 1 130
    DownLoad: Download CSV

    Table  3  Historical experiment data of BCC-CSM2-MR

    模式 分量模式 要素 格式 时间段 时效 分辨率
    BCC-CSM2-MR 大气 近地表气温、地表气压、降水等 NetCDF 1850—2014年 月、日、3 h等 320×160,L46,L19等
    陆面 土壤总含水量、地表径流等 NetCDF 1850—2014年 月、日、3 h等 320×160
    海洋 海表面温度、海水质量、海表面压力等 NetCDF 1850—2014年 月、日 360×232,L40
    海冰 海冰厚度、海冰面积、海冰表面温度等 NetCDF 1850—2014年 月、日 360×232
    DownLoad: Download CSV
  • [1]
    Zhou T J, Zou L W, Wu B, et al. Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Proiect perspective. Acta Meteor Sinica, 2014, 72(5): 892-907. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405007.htm
    [2]
    Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6)experimental design and organization. Geosci Model Dev, 2016, 9: 1937-1958. doi:  10.5194/gmd-9-1937-2016
    [3]
    Zhao Z C, Luo Y, Huang J B. Design of CMIP6. Climate Change Research, 2016, 12(3): 258-260. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201603013.htm
    [4]
    Zhao Z C, Luo Y, Huang J B. The detection of the CMIP5 climate model to see the development of CMIP6 Earth system models. Climate Change Research, 2018, 14(6): 634-648. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201806012.htm
    [5]
    ESGF Home Page. [2019-02-16]. https://esgf-node.llnl.gov/.
    [6]
    Xin X G, Wu T W, Zhang J. Introduction of CMIP5 Experiments carried out by BCC Climate System Model. Climate Change Research, 2012, 8(5): 378-382. doi:  10.3969/j.issn.1673-1719.2012.05.010
    [7]
    Xin X G, Wu T W, Zhang J, et al. Introduction of BCC models and its participation in CMIP6. Climate Change Research, 2019, 15(5): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201905014.htm
    [8]
    Wu T, Zhang F, Zhang J, et al. Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations. Geosci Model Dev, 2020, 13: 977-1005. doi:  10.5194/gmd-13-977-2020
    [9]
    Wu T W, Lu Y X, Fang Y J, et al. The Beijing Climate Center Climate System Model(BCC-CSM): Main progress from CMIP5 to CMIP6. Geosci Model Dev, 2019, 12: 1573-1600. doi:  10.5194/gmd-12-1573-2019
    [10]
    Wu T, Yu R, Lu Y, et al. BCC-CSM2-HR: A high-resolution version of the Beijing Climate Center Climate System Model. Geosci Model Dev, 2021, 14: 2977-3006. doi:  10.5194/gmd-14-2977-2021
    [11]
    Collins W J, Lamarque J-F, Schulz M, et al. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci Model Dev, 2017, 10: 585-607. doi:  10.5194/gmd-10-585-2017
    [12]
    Haarsma R J, Roberts M J, Vidale P L, et al. High Resolution Model Intercomparison Project(HithResMIP V1.0) for CMIP6. Geosci Model Dev, 2016, 9: 4185-4208. doi:  10.5194/gmd-9-4185-2016
    [13]
    Boer G J, Smith D M, Cassou C, et al. The Decadal Climate Prediction Project(DCPP) contribution to CMIP6. Geosci Model Dev, 2016, 9: 3751-3777. doi:  10.5194/gmd-9-3751-2016
    [14]
    Wei M, Li Q Q, Xin X G, et al. Improved decadal climate prediction in the North Atlantic using EnOI-assimilated initial condition. Sci Bull, 2017, 62(16): 1142-1147. doi:  10.1016/j.scib.2017.08.012
    [15]
    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109
    [16]
    Qiu L, Tan B. Research and application of security domain. Comput Secur, 2012(6): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJC201206011.htm
    [17]
    Zhang Z Q, Zhu C W, Su J Z, et al. Designing and implementation of Climate Dynamic Diagnosis and Analysis System. J Appl Meteor Sci, 2021, 32(5): 542-552. doi:  10.11898/1001-7313.20210503
    [18]
    Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi:  10.11898/1001-7313.20210502
    [19]
    Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. doi:  10.11898/1001-7313.20200102
    [20]
    Dong X Y, Yu J H, Liang X Z, et al. Bias correction of summer extreme precipitation simulated by CWRF model. J Appl Meteor Sci, 2020, 31(4): 504-512. doi:  10.11898/1001-7313.20200412
    [21]
    CMOR. [2021-01-08]. https://cmor.llnl.gov/pdf.
    [22]
    CMIP6 Table Excerpt. [2022-02-01]. https://cmor.llnl.gov/mydoc_cmip6_table_excerpt.
    [23]
    Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101
    [24]
    Cheng F, Li Q P, Shen X Y, et al. Evaluation of Eurasian snow cover fraction prediction based on BCC-CSM1.1m. J Appl Meteor Sci, 2021, 32(5): 553-566. doi:  10.11898/1001-7313.20210504
    [25]
    Wei M. Study on adaptability of meteorological high performance computing application services environment. Meteor Mon, 2015, 41(1): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201501011.htm
    [26]
    Wang J H, Li Q Q, Wang F, et al. Correction of precipitation forecast predicted by DERF2.0 during the pre-flood season in South China. J Appl Meteor Sci, 2021, 32(1): 115-128. doi:  10.11898/1001-7313.20210110
    [27]
    Gillett N P, Shiogama H, Funke B, et al. The Detection and Attribution Model Intercomparison Project Project(DAMIP V1.0) contribution to CMIP6. Geosci Model Dev, 2016, 9: 3685-3697.
    [28]
    O'Neill B C, Tebaldi C, van Vuuren D P, et al. The Scenario Model Intercomparison Project(ScenarioMIP) for CMIP6. Geosci Model Dev, 2016, 9: 3461-3482.
    [29]
    Jones C D, Arora V, Friedlingstein P, et al. C4MIP: The Coupled Climate-Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6. Geosci Model Dev, 2016, 9: 2853-2880.
    [30]
    Zhou T J, Turner A G, Kinter J L, et al. GMMIP(V1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project. Geosci Model Dev, 2016, 9: 3589-3604.
    [31]
    Webb M J, Andrews T, Bodas-Salcedo A, et al. The Cloud Feedback Model Intercomparison Project(CFMIP) contribution to CMIP6. Geosci Model Dev, 2017, 10: 359-384.
    [32]
    van den Hurk B, Kim H, Krinner G, et al. LS3MIP(V1.0) contribution to CMIP6: The Land Surface, Snow and Soil moisture Model Intercomparison Project: Aims, setup and expected outcome. Geosci Model Dev, 2016, 9: 2809-2832.
    [33]
    Lawrence D M, Hurtt G C, Arneth A, et al. The Land Use Model Intercomparison Project(LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci Model Dev, 2016, 9: 2973-2998.
    [34]
    Xin X, Wu T, Jie W, et al. Impact of higher resolution on precipitation over China in CMIP6 HighResMIP Models. Atmosphere, 2021, 12(6): 762.
    [35]
    Zhang J, Furtado K, Turnock S T, et al. The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models. Atmos Chem Phys, 2021, 21: 18609-18627.
    [36]
    Ahmed F, Neelin J D. A Process-oriented diagnostic to assess precipitation-thermodynamic relations and application to CMIP6 models. Geophys Res Lett, 2021, 48, e2021GL094108.
    [37]
    [38]
    IPCC. Annex II: Models//Climate Change 2021: The 19 Physical Science Basis. Cambridge: Cambridge University Press, 2021.
    [39]
    Huang X Y, Li X H. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. doi:  10.11898/1001-7313.20220209
    [40]
    Yu J W, Li Q Q, Ding Y H, et al. Long-term trend of water vapor over the Tibetan Plateau in boreal summer under global warming. Sci China(Earth Sci), 2022, 52(5): 942-954. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202205010.htm
    [41]
    Liu L L, Wei L X, Xu Y, et al. Projection of climate change impacts on ecological flow in the Yellow River Basin. Adv Water Sci, 2021, 32(6): 824-833. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202106002.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(3)

    Article views (2864) PDF downloads(244) Cited by()
    • Received : 2022-03-31
    • Accepted : 2022-07-01
    • Published : 2022-09-15

    /

    DownLoad:  Full-Size Img  PowerPoint