气压层/hPa | 样本量 | 相关系数 | 平均偏差/℃ | 绝对偏差/℃ | 均方根误差/℃ |
100 | 7736865 | 0.98 | 0.17 | 1.14 | 1.71 |
400 | 8863018 | 0.99 | -0.22 | 1.44 | 1.94 |
700 | 8858121 | 0.98 | -0.21 | 1.92 | 2.66 |
850 | 8475087 | 0.97 | -0.48 | 2.63 | 3.56 |
Citation: | Ren Suling, Niu Ning, Qin Danyu, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. DOI: 10.11898/1001-7313.20220605. |
Fig. 4 Time series of regional average temperature at 850 hPa from 1 Feb to 28 Feb in 2021 )
(a)regional average FY-3D/VASS temperature(blue line denotes region of 50°-80°N, 50°-150°W, black line denotes region of 50°-80°N, 100°-150°W) and climate regional ERA5 temperature(red line denotes region of 50°-80°N,100°-150°W), (b)regional average FY-3D/VASS temperature anomaly(50°-80°N,100°-150°W), (c)percentage of regional average FY-3D/VASS temperature anomaly(50°-80°N, 100°-150°W
Fig. 11 Convection and flash from geostationary meteorological satellites in 2021
(a)convection frequency from GridSat from 12 Feb to 17 Feb(the shaded denotes frequency of cloud top brightness temperature lower than -32℃, the blue isoline denotes frequency of cloud top brightness temperature lower than -42℃(greater than 6%), unit:%), (b)the cloud top brightness temperature from GridSat at 2100 UTC 15 Feb, (c)total number of flash from GOES-R GLM from 14 Feb to 17 Feb, (d)total number of flash from GOES-R GLM from 2000 UTC to 2200 UTC on 15 Feb
Table 1 Accuracy of FY-3D/VASS temperature in North America(10°-85°N,50°-150°W) in Feb 2021
气压层/hPa | 样本量 | 相关系数 | 平均偏差/℃ | 绝对偏差/℃ | 均方根误差/℃ |
100 | 7736865 | 0.98 | 0.17 | 1.14 | 1.71 |
400 | 8863018 | 0.99 | -0.22 | 1.44 | 1.94 |
700 | 8858121 | 0.98 | -0.21 | 1.92 | 2.66 |
850 | 8475087 | 0.97 | -0.48 | 2.63 | 3.56 |
[1] |
Valipour M, Bateni S M, Jun C.Global surface temperature:A new insight.Climate, 2021, 9(5):81. doi: 10.3390/cli9050081
|
[2] |
Wu B Y, Li Z K, Francis J A, et al. A recent weakening of winter temperature association between Arctic and Asia. Environ Res Lett, 2022, 17(3): 034030. doi: 10.1088/1748-9326/ac4b51
|
[3] |
Zhang H D, Gao S T, Liu Y. Advances of research on polar vortex. Plateau Meteor, 2008, 27(2): 452-461.
|
[4] |
Dong X Y, Wu B Y. Dynamic linkages between heat wave events in Jianghuai Region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi: 10.11898/1001-7313.20190404
|
[5] |
Willett H C. Long-period fluctuations of general circulation of the atmosphere. J Atmos Sci, 1949, 6: 34-50.
|
[6] |
Liu C F, Gao B. Climate of chilling damage in spring in Southern China and its atmospheric circulation features. J Trop Meteor, 2001, 17(2): 179-187. doi: 10.3969/j.issn.1004-4965.2001.02.010
|
[7] |
Jiang Z B, Wang P X, Wu X, et al. Spatial-temporal variations of polar vortex anomaly over Northern Hemisphere in winter. Trans Atmos Sci, 2013, 36(2): 202-216. doi: 10.3969/j.issn.1674-7097.2013.02.009
|
[8] |
Yang J, Qian Y F. Climate characteristics of monthly mean height field on 30 hPa in stratosphere. Plateau Meteor, 2005, 24(2): 152-159. doi: 10.3321/j.issn:1000-0534.2005.02.004
|
[9] |
Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi: 10.11898/1001-7313.20200306
|
[10] |
Zhang J W, Li D L, Liu Y J. New features of polar vortex and its impact on winter temperature of China. Plateau Meteor, 2014, 33(3): 721-732. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201403014.htm
|
[11] |
Laseur N E. On asymmetry of the middle latitude circumpolar current. J Atmos Sci, 1954, 11(1): 43-57.
|
[12] |
Angell J K. Contraction of the 300 mb north circumpolar vortex during 1963-1997 and its movement into the eastern hemisphere. J Geophys Res, 1998, 103(D20): 25887-25893. doi: 10.1029/98JD02451
|
[13] |
Lukens K E, Berbery E H, Hodges K I. The imprint of strong-storm tracks on winter weather in North America. J Climate, 2018, 31(5): 2057-2074. doi: 10.1175/JCLI-D-17-0420.1
|
[14] |
Stephen J C. Winter cyclone frequencies over the eastern United States and adjacent western Atlantic 1964-1973. Bull Amer Meteor Soc, 1976, 57(5): 548-553.
|
[15] |
Hoskins B J, Hodges K I. New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci, 2002, 59(6): 1041-1061.
|
[16] |
Eichler T P, Gaggini N, Pan Z. Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J Geophys Res Atmos, 2013, 118(10): 3919-3932.
|
[17] |
Zheng C, Chang E K, Kim H M, et al. Impacts of the Madden-Julian oscillation on storm track activity, surface air temperature, and precipitation over North America. J Climate, 2018, 31(15): 6113-6134.
|
[18] |
Rasmijn L M, Schrier G, Barkmeijer J, et al. Simulating the extreme 2013/2014 winter in a future climate. J Geophys Res Atmos, 2016, 121(10): 5680-5698.
|
[19] |
James D G, David J F, Upmanu L, et al. How unprecedented was the February 2021 Texas cold snap. Environ Res Lett, 2021, 16(6): 064056.
|
[20] |
Zhang P, Guo Q, Chen B Y, et al. The Chinese next-generation geostationary meteorological satellite FY-4 compared with the Japanese Himawari-8/9 satellites. Adv Meteor Sci Tech, 2016, 6(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201601026.htm
|
[21] |
Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellite Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658.
|
[22] |
Zhang Z Q, Lu F, Fang X, et al. Application and development of FY-4 meteorological satellite. Aerospace Shanghai, 2017, 34(4): 8-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704002.htm
|
[23] |
Zhang P, Hu X Q, Lu Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit. Adv Atmos Sci, 2022, 39(1): 1-8.
|
[24] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146(730): 1999-2049.
|
[25] |
Xian D, Zhang P, Gao L, et al. Fengyun meteorological satellite products for earth system science applications. Adv Atmos Sci, 2021, 38(8): 1267-1284.
|
[26] |
Gu S Y, Wang Z Z, Li J, et al. The radiometric characteristics of sounding channels for FY-3A/MWHS. J Appl Meteor Sci, 2010, 21(3): 335-341. http://qikan.camscma.cn/article/id/20100309
|
[27] |
Guo Y, Lu N M, Gu S Y, et al. Radiometric characteristics of FY-3C microwave humidity and temperature sounder. J Appl Meteor Sci, 2014, 25(4): 436-444. http://qikan.camscma.cn/article/id/20140406
|
[28] |
Zhang P, Yang H, Qiu H, et al. Quantitative remote sensing from the current Fengyun 3 satellites. Adv Meteor Sci Tech, 2012, 2(4): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201204005.htm
|
[29] |
Zhuang G T. Technical Review of National High Impact Weather Monitoring and Forecasting Service(2021). Beijing: China Meteorological Press, 2022.
|
[30] |
Zeng Z M, Yan Z W. Analysis on the significant of global warming trends during the last 100 years. J Appl Meteor Sci, 1998, 10(SupplⅠ): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX9S1.003.htm
|
[31] |
Yang Z D, Zhang P, Gu S Y, et al. Application and development of FY-3 meteorological satellite. Aerospace Shanghai, 2017, 34(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704001.htm
|
[32] |
Knapp K R, Ansari S, Bain C L, et al. Globally gridded satellite(GridSat) observations for climate studies. Bull Amer Meteor Soc, 2011, 92: 893-907.
|
[33] |
Hou A Y, Kakar R K, Neek S, et al. The global precipitation measurement mission. Bull Amer Meteor Soc, 2014, 95: 701-722.
|
[34] |
Rutledge S A, Hilburn K A, Clayton A, et al. Evaluating geostationary lightning mapper flash rates within intense convective storms. J Geophys Res Atmos, 2020, 125, e2020JD032827.
|
[35] |
Hoskins B J, Mclntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc, 1985, 111(470): 877-946.
|
[36] |
Fang X, Ren S L, Li Y, et al. Weather Analysis and Forecasting Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis. Beijing: Science Press, 2008.
|
[37] |
He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi: 10.11898/1001-7313.20220401
|
[38] |
He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|
[39] |
Chen H X, Chen Y, Lu E, et al. Anomalous moisture and temperature characteristics in precipitation process during January 2008 heavy snowstorm in China. J Appl Meteor Sci, 2015, 26(5): 525-535. doi: 10.11898/1001-7313.20150502
|
[40] |
Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi: 10.11898/1001-7313.20200206
|