Liu Yongzhu, Zhang Lin, Chen Jiong, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. DOI:  10.11898/1001-7313.20230102.
Citation: Liu Yongzhu, Zhang Lin, Chen Jiong, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. DOI:  10.11898/1001-7313.20230102.

An Improvement of the Linearized Planetary Boundary Layer Parameterization Scheme for CMA-GFS 4DVar

DOI: 10.11898/1001-7313.20230102
  • Received Date: 2022-10-08
  • Rev Recd Date: 2022-11-24
  • Publish Date: 2023-01-31
  • By continuously developing and optimizing the linearized physical process of the tangent linear model and keeping it consistent with the nonlinear model, the analysis and forecasting performance of four-dimensional variational data assimilation (4DVar) of China Meteorological Administration Global Forecast System (CMA-GFS) can be effectively improved. Currently, the planetary boundary layer (PBL) parameterization scheme adopted by CMA-GFS model is based on Charney-Phillips (C-P) grid, while the linearization PBL parameterization scheme used in CMA-GFS 4DVar is on the basis of Lorenz grid. The zigzag noise of the temperature and moisture in the boundary layer is removed and the correspondent profiles appear to be smooth with C-P PBL parameterization scheme, and the forecast errors of CMA-GFS model are effectively reduced. To improve the analysis and prediction effects of 4DVar on the boundary layer, a new linearized PBL parameterization scheme based on the C-P grid (TL_NMRF_CP) is developed. By making more refined regularization constraints on the disturbances of the surface heat flux, the surface water vapor flux, Richardson coefficient of the free atmosphere, the heat and momentum exchange coefficient of the boundary layer, the influence of the linearization process on the accuracy of the tangent linear approximation is reduced while ensuring stable operation of the tangent linear and adjoint models. Two tests are designed, one is TL_MRF test based on the original TL_MRF scheme and the other is TL_NMRF_CP test based on the TL_NMRF_CP scheme. The tangent linear approximation tests show that, compared with the original scheme, the TL_NMRF_CP scheme can improve the tangent linear model forecast accuracy on the boundary layer, reduce the relative error of the potential temperature of the boundary layer by up to 10%, reduce the relative error of the specific humidity by 5% at the most, and reduce the relative error of zonal wind by up to 12%. In the minimization process of CMA-GFS 4DVar, the TL_NMRF_CP scheme can reduce the relative difference of the cost functions caused by different resolutions between inner and outer loops of the 4DVar system, and improve the convergence efficiency of 4DVar. The batch cycle assimilation forecast experiments of CMA-GFS 4DVar further verify that the TL_NMRF_CP scheme can provide better analysis and prediction results. The TL_NMRF_CP scheme has also been applied to CMA-GFS 4DVar operation system.
  • Fig. 1  Vertical distribution of global mean relative error of potential temperature perturbation in CMA-GFS tangent linear model

    Fig. 2  Zonal mean absolute errors of potential temperature perturbation for TL_MRF test

    Fig. 3  Improvements in potential temperature perturbation of TL_NMRF_CP test relative to TL_MRF test

    Fig. 4  Vertical distribution of global mean relative error of specific humidity perturbation in CMA-GFS tangent linear model

    Fig. 5  Zonal mean absolute errors of specific humidity perturbation for TL_MRF test

    Fig. 6  Improvements in specific humidity perturbation of TL_NMRF_CP test relative to TL_MRF test

    Fig. 7  Vertical distribution of global mean relative error of zonal wind perturbation in CMA-GFS tangent linear model

    Fig. 8  Mean absolute errors of zonal wind perturbation for TL_MRF test

    Fig. 9  Improvements in zonal wind perturbation of TL_NMRF_CP test relative to TL_MRF test

    Fig. 10  Convergence of the cost function under CMA-GFS 4DVar

    Fig. 11  Anomaly correlations of 700 hPa geopotential height for the Northern Hemisphere and the Southern Hemisphere

    Table  1  Setting of CMA-GFS 4DVar test

    设置 详细配置
    水平分辨率 外循环为1.0°×1.0°,内循环为1.0°×1.0°
    模式积分步长 外循环为450 s,内循环为900 s
    垂直层数 87层
    同化时间窗长度 6 h
    观测剖分间隔 30 m
    线性化物理过程 垂直扩散、地形阻塞流拖曳、对流参数化、大尺度凝结
    极小化算法 有预调节的Lanczos-CG算法
    重力波控制 数字滤波弱约束
    最大极小化迭代次数 50次
    DownLoad: Download CSV
  • [1]
    Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525(7567):47-55. doi:  10.1038/nature14956
    [2]
    Shen X H, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476.
    [3]
    Rabier F, Järvinen H, Klinker E, et al. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart J Roy Meteor Soc, 2000, 126(564): 1143-1170. doi:  10.1002/qj.49712656415
    [4]
    Klinker E, Rabier F, Kelly G, et al. The ECMWF operational implementation of four-dimensional variational assimilation. Ⅲ: Experimental results and diagnostics with operational configuration. Quart J Roy Meteor Soc, 2000, 126(564): 1191-1215. doi:  10.1002/qj.49712656417
    [5]
    Gauthier P, Tanguay M, Laroche S, et al. Extension of 3DVar to 4DVar: Implementation of 4DVar at the meteorological service of Canada. Mon Wea Rev, 2010, 135(6): 2339-2354.
    [6]
    Rawlins F, Ballard S P, Bovis K J, et al. The Met Office global four-dimensional variational data assimilation scheme. Quart J Roy Meteor Soc, 2010, 133(623): 347-362.
    [7]
    Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145(722): 1-15.
    [8]
    Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4DVar, using an incremental approach. Quart J Roy Meteor Soc, 1994, 120(519): 1367-1387. doi:  10.1002/qj.49712051912
    [9]
    Errico R M. What is an adjoint model?. Bull Amer Meteor Soc, 1997, 78(11): 2577-2592. doi:  10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
    [10]
    Liu Y Z, Zhang L, Jin Z Y. The optimization of GRAPES global tangent linear model and adjoint model. J Appl Meteor Sci, 2017, 28(1): 62-71. doi:  10.11898/1001-7313.20170106
    [11]
    Mahfouf J F. Influence of physical processes on the tangent-linear approximation. Tellus A, 2000, 51(2): 147-166.
    [12]
    Gong J D, Liu Y Z, Zhang L. A study on simplification and linearization of NSAS deep convection cumulus parameterization scheme for 4D-Var. Acta Meteor Sinica, 2019, 77(4): 595-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904001.htm
    [13]
    Liu Y Z, Gong J D, Zhang L, et al. Influence of linearized physical processes on the CMA-GFS 4DVar. Acta Meteor Sinica, 2019, 77(2): 196-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902003.htm
    [14]
    Zou X. Tangent linear and adjoint of "on-off" processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus A, 1997, 49(1): 3-31. doi:  10.3402/tellusa.v49i1.12209
    [15]
    Holdaway D, Errico R. Using jacobian sensitivities to assess a linearization of the relaxed arakawa-schubert convection scheme. Quart J Roy Meteor Soc, 2014, 40(681): 1319-1332.
    [16]
    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [17]
    Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi:  10.11898/1001-7313.20170102
    [18]
    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [19]
    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [20]
    Charney J G, Phillips N A. Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Atmos Sci, 1953, 10(2): 71-99.
    [21]
    Han J, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea Forecasting, 2010, 26: 520-533.
    [22]
    Lorenz E N. Energy and numerical weather prediction. Tellus, 1960, 12: 364-373.
    [23]
    Chen J, Ma Z, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in CMA-GFS global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204.
    [24]
    Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in CMA-GFS Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi:  10.11898/1001-7313.20170105
    [25]
    Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307
    [26]
    Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339.
    [27]
    Zhang L, Zhu Z S. Estimation of linearized vertical diffusion scheme in GRAPES model. J Appl Meteor Sci, 2008, 19(2): 194-200. http://qikan.camscma.cn/article/id/20080235
    [28]
    Liu Y Z, Zhang L, Lian Z H. Conjugate gradient algorithm in the four-dimensional variational data assimilation system in CMA-GFS. J Meteor Res, 2018, 32(6): 974-984.
    [29]
    Zhang L, Liu Y Z. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. doi:  10.11898/1001-7313.20170204
    [30]
    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
  • 作者更正.pdf
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (1269) PDF downloads(92) Cited by()
    • Received : 2022-10-08
    • Accepted : 2022-11-24
    • Published : 2023-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint