设置 | 详细配置 |
水平分辨率 | 外循环为1.0°×1.0°,内循环为1.0°×1.0° |
模式积分步长 | 外循环为450 s,内循环为900 s |
垂直层数 | 87层 |
同化时间窗长度 | 6 h |
观测剖分间隔 | 30 m |
线性化物理过程 | 垂直扩散、地形阻塞流拖曳、对流参数化、大尺度凝结 |
极小化算法 | 有预调节的Lanczos-CG算法 |
重力波控制 | 数字滤波弱约束 |
最大极小化迭代次数 | 50次 |
Citation: | Liu Yongzhu, Zhang Lin, Chen Jiong, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. DOI: 10.11898/1001-7313.20230102. |
Table 1 Setting of CMA-GFS 4DVar test
设置 | 详细配置 |
水平分辨率 | 外循环为1.0°×1.0°,内循环为1.0°×1.0° |
模式积分步长 | 外循环为450 s,内循环为900 s |
垂直层数 | 87层 |
同化时间窗长度 | 6 h |
观测剖分间隔 | 30 m |
线性化物理过程 | 垂直扩散、地形阻塞流拖曳、对流参数化、大尺度凝结 |
极小化算法 | 有预调节的Lanczos-CG算法 |
重力波控制 | 数字滤波弱约束 |
最大极小化迭代次数 | 50次 |
[1] |
Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525(7567):47-55. doi: 10.1038/nature14956
|
[2] |
Shen X H, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476.
|
[3] |
Rabier F, Järvinen H, Klinker E, et al. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart J Roy Meteor Soc, 2000, 126(564): 1143-1170. doi: 10.1002/qj.49712656415
|
[4] |
Klinker E, Rabier F, Kelly G, et al. The ECMWF operational implementation of four-dimensional variational assimilation. Ⅲ: Experimental results and diagnostics with operational configuration. Quart J Roy Meteor Soc, 2000, 126(564): 1191-1215. doi: 10.1002/qj.49712656417
|
[5] |
Gauthier P, Tanguay M, Laroche S, et al. Extension of 3DVar to 4DVar: Implementation of 4DVar at the meteorological service of Canada. Mon Wea Rev, 2010, 135(6): 2339-2354.
|
[6] |
Rawlins F, Ballard S P, Bovis K J, et al. The Met Office global four-dimensional variational data assimilation scheme. Quart J Roy Meteor Soc, 2010, 133(623): 347-362.
|
[7] |
Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145(722): 1-15.
|
[8] |
Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4DVar, using an incremental approach. Quart J Roy Meteor Soc, 1994, 120(519): 1367-1387. doi: 10.1002/qj.49712051912
|
[9] |
Errico R M. What is an adjoint model?. Bull Amer Meteor Soc, 1997, 78(11): 2577-2592. doi: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
|
[10] |
Liu Y Z, Zhang L, Jin Z Y. The optimization of GRAPES global tangent linear model and adjoint model. J Appl Meteor Sci, 2017, 28(1): 62-71. doi: 10.11898/1001-7313.20170106
|
[11] |
Mahfouf J F. Influence of physical processes on the tangent-linear approximation. Tellus A, 2000, 51(2): 147-166.
|
[12] |
Gong J D, Liu Y Z, Zhang L. A study on simplification and linearization of NSAS deep convection cumulus parameterization scheme for 4D-Var. Acta Meteor Sinica, 2019, 77(4): 595-616. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904001.htm
|
[13] |
Liu Y Z, Gong J D, Zhang L, et al. Influence of linearized physical processes on the CMA-GFS 4DVar. Acta Meteor Sinica, 2019, 77(2): 196-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902003.htm
|
[14] |
Zou X. Tangent linear and adjoint of "on-off" processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus A, 1997, 49(1): 3-31. doi: 10.3402/tellusa.v49i1.12209
|
[15] |
Holdaway D, Errico R. Using jacobian sensitivities to assess a linearization of the relaxed arakawa-schubert convection scheme. Quart J Roy Meteor Soc, 2014, 40(681): 1319-1332.
|
[16] |
Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101
|
[17] |
Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi: 10.11898/1001-7313.20170102
|
[18] |
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[19] |
Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502
|
[20] |
Charney J G, Phillips N A. Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Atmos Sci, 1953, 10(2): 71-99.
|
[21] |
Han J, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea Forecasting, 2010, 26: 520-533.
|
[22] |
Lorenz E N. Energy and numerical weather prediction. Tellus, 1960, 12: 364-373.
|
[23] |
Chen J, Ma Z, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in CMA-GFS global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204.
|
[24] |
Chen J, Ma Z S, Su Y. Boundary layer coupling to Charney-Phillips vertical grid in CMA-GFS Model. J Appl Meteor Sci, 2017, 28(1): 52-61. doi: 10.11898/1001-7313.20170105
|
[25] |
Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307
|
[26] |
Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339.
|
[27] |
Zhang L, Zhu Z S. Estimation of linearized vertical diffusion scheme in GRAPES model. J Appl Meteor Sci, 2008, 19(2): 194-200. http://qikan.camscma.cn/article/id/20080235
|
[28] |
Liu Y Z, Zhang L, Lian Z H. Conjugate gradient algorithm in the four-dimensional variational data assimilation system in CMA-GFS. J Meteor Res, 2018, 32(6): 974-984.
|
[29] |
Zhang L, Liu Y Z. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. doi: 10.11898/1001-7313.20170204
|
[30] |
Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602
|
作者更正.pdf |