平漂探空数据段 | 匹配次数 | 平均绝对偏差/℃ | 均方根误差/℃ | 相关系数 |
上升段 | 367 | 1.34 | 1.95 | 0.99 |
平漂段 | 249 | 3.92 | 4.10 | 0.04 |
下降段 | 769 | 1.93 | 2.46 | 0.99 |
Citation: | Zhou Xuesong, Guo Qiyun, Xia Yuancai, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. DOI: 10.11898/1001-7313.20230105. |
Fig. 1 Ascending section of Nanchang Station at 0730 BT 11 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig. 2 Ascending section of Ganzhou Station at 1930 BT 5 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig. 3 The horizontal drift section of Changsha Station at 1930 BT 11 June 2021
(a)satellite and original sounding temperature profile, (b)satellite and sparse sounding temperature profile, (c)curve of temperature error changing with time, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig. 4 Descending section of Wuhan Station at 1330 BT 25 Jun 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig. 5 Descending section of Yichang Station at 0130 BT 9 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Table 1 Inspection and evaluation of satellite data
平漂探空数据段 | 匹配次数 | 平均绝对偏差/℃ | 均方根误差/℃ | 相关系数 |
上升段 | 367 | 1.34 | 1.95 | 0.99 |
平漂段 | 249 | 3.92 | 4.10 | 0.04 |
下降段 | 769 | 1.93 | 2.46 | 0.99 |
Table 2 Inspection and evaluation of satellite data at ascending section
探空站 | 07:30 | 19:30 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | ||
武汉 | 1.32 | 1.74 | 1.18 | 1.58 | |
南昌 | 1.32 | 1.99 | 1.12 | 1.88 | |
宜昌 | 1.22 | 1.60 | 1.30 | 1.66 | |
安庆 | 1.51 | 1.86 | 1.46 | 2.11 | |
赣州 | 1.12 | 1.48 | 1.38 | 2.95 | |
长沙 | 2.15 | 2.95 | 1.06 | 1.34 |
Table 3 Inspection and evaluation of satellite data at horizontal drift section
探空站 | 平均绝对偏差/℃ | 均方根误差/℃ |
武汉 | 3.33 | 3.56 |
南昌 | 3.03 | 3.20 |
宜昌 | 3.24 | 3.41 |
安庆 | 4.42 | 4.60 |
赣州 | 3.56 | 3.72 |
长沙 | 5.97 | 6.09 |
Table 4 Inspection and evaluation of satellite data at descending section
探空站 | 13:30 | 01:30 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | ||
武汉 | 3.67 | 4.43 | 2.16 | 2.73 | |
南昌 | 1.33 | 1.79 | 3.32 | 4.30 | |
宜昌 | 1.67 | 2.06 | 1.04 | 1.38 | |
安庆 | 1.54 | 2.00 | 1.41 | 2.16 | |
赣州 | 1.60 | 2.09 | 1.03 | 1.30 | |
长沙 | 3.26 | 3.79 | 1.13 | 1.51 |
Table 5 Test of satellite data at different altitudes
高度 | 平均绝对偏差/℃ | 均方根误差/℃ |
地面至850 hPa* | 1.68 | 1.93 |
850 hPa至100 hPa** | 1.16 | 1.62 |
100 hPa至10 hPa | 1.75 | 2.21 |
注:*表示含850 hPa, **表示含100 hPa。 |
Table 6 Influence of statistical cloud on satellite inversion temperature
探空数据段 | 云状态 | 探空湿度廓线云判识算法 | FY-3D成像仪云数据 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | |||
上升段 | 有云 | 1.60 | 3.01 | 1.63 | 2.92 | |
无云 | 1.28 | 1.70 | 1.32 | 1.91 | ||
下降段 | 有云 | 2.08 | 2.59 | 1.74 | 2.22 | |
无云 | 1.73 | 2.31 | 1.28 | 1.71 |
[1] |
Cheng K Q, Guo Q Y, Ma X L, et al. Research of quality control method of GNSS occultation observation inversion temperature. J Electr Measur Instr, 2020, 34(7): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202007023.htm
|
[2] |
Yan R, Wang L W, Hu Z, et al. Quantitative verification on satellite observational data of ionospheric structure parameters using ground-based data. Acta Seismologica Sinica, 2017, 39(4): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201704009.htm
|
[3] |
Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. doi: 10.11898/1001-7313.20200102
|
[4] |
Zhang X P, Guo Q Y, Yang R K, et al. Assimilation experiment of rainstorm in the middle and lower reaches of the Yangtze River based on "up-drift-down" sounding data. Meteor Mon, 2021, 47(12): 1512-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202112007.htm
|
[5] |
Yang G B, Guo Q Y, Shu K N, et al. Quality analysis of the radiosonde wind observation data based on the list control method. Meteor Mon, 2021, 47(6): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106008.htm
|
[6] |
Yao W, Ma Y, Gao L N. Comparison of relative humidity data between L-band and 59-701 sounding system. J Appl Meteor Sci, 2017, 28(2): 218-226. doi: 10.11898/1001-7313.20170209
|
[7] |
Lei Y, Guo Q Y, Qian Y, et al. Evaluation and quality mark of radiosonde geopotential height of L-band radar. J Appl Meteor Sci, 2018, 29(6): 710-723. doi: 10.11898/1001-7313.20180607
|
[8] |
Guo Q Y, Yang R K, Qian Y, et al. Full-range sounding comparison analysis of balloon borne radiosonde rising and parachute carrying radiosonde descending. Meteor Mon, 2018, 44(8): 1094-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201808011.htm
|
[9] |
Zhu Y J, Li W B, Chen Y. Study of total precipitable water by GMS-5. J Appl Meteor Sci, 1998, 9(1): 8-14. http://qikan.camscma.cn/article/id/19980102
|
[10] |
Du M B, Yang Y M, Ding J C. Evaluation for retrieving precision and some merits of COSMIC data. J Appl Meteor Sci, 2009, 20(5): 586-593. http://qikan.camscma.cn/article/id/20090510
|
[11] |
Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi: 10.11898/1001-7313.20220505
|
[12] |
Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205
|
[13] |
Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502
|
[14] |
Cao X Z, Guo Q Y, Yang R K. Research of rising and falling twice sounding based on long-time interval of flat-floating. Chinese J Sci Instr, 2019, 40(2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902023.htm
|
[15] |
Yang C Y, Guo Q Y, Cao X Z, et al. Analysis of gravity wave characteristics in the lower stratosphere based on new round-trip radiosonde. Acta Meteor Sinica, 2021, 79(1): 150-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101011.htm
|
[16] |
Wang J C, Wang D, Yang R K, et al. A return radiosonde trajectory forecast method and its preliminary evaluation based on high resolution numerical weather prediction model. Chinese J Atmos Sci, 2021, 45(3): 651-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202103013.htm
|
[17] |
Wang D, Wang J C, Tian W H, et al. Quality control and uncertainty analysis of return radiosonde data. Chinese J Atmos Sci, 2020, 44(4): 865-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004013.htm
|
[18] |
Liang Z H, Wang D H, Liang Z M. Spatio-temporal characteristics of boundary layer height derived from soundings. J Appl Meteor Sci, 2020, 31(4): 447-459. doi: 10.11898/1001-7313.20200407
|
[19] |
Wang Y, Xiong A Y. Effects of radiosonde system changing to L-band radar digital radiosonde on humidity measurements in China. J Appl Meteor Sci, 2015, 26(1): 76-86. doi: 10.11898/1001-7313.20150108
|
[20] |
Qian Y, Ma X L, Guo Q Y, et al. Error analysis of sounding temperature data based on the FNL and GRAPES analysis fields. Meteor Mon, 2019, 45(10): 1464-1475. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201910013.htm
|
[21] |
Guo Q Y, Qian Y, Yang R K, et al. Study on the quality control method of wind measurement of L-band sounding radar. Trans Atmos Sci, 2020, 43(5): 845-855.
|
[22] |
Zhu A J, Hu X Q, Lin M Y, et al. Global data acquisition methods and data distribution for FY-3D meteorological satellite. J Marine Meteor, 2018, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201803001.htm
|
[23] |
Duan Y Q, Wang Z Z, Zhang S W. Modeling and simulating of microwave humidity and temperature sounder onboard the FY-3(D) satellite. J Electr Infor Tech, 2020, 42(6): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202006030.htm
|
[24] |
Gu S Y, Guo Y, Wang Z Z, et al. Calibration analyses for sounding channels of MWHS onboard FY-3A. Adv Meteor Sci Tech, 2013, 3(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201304011.htm
|
[25] |
Wang Y T, Liu L M. Characteristics of HDF5 format and their reference value to the standardization of remote sensing data. Remote Sensing for Land & Resources, 2005(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200503009.htm
|
[26] |
Zhang M X, Li G C. The Study and implementation of extraction MERSI image data based on the file format of HDF. Modern Agricultural Sciences, 2009, 16(3): 189-191;222. https://www.cnki.com.cn/Article/CJFDTOTAL-NCSY200903079.htm
|
[27] |
Huang Y W, Liu Q, He M, et al. Research on inversion precision of temperature profile of GⅡRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 2019, 40(9): 28-38.
|
[28] |
Cheng K Q, Guo Q Y, Yang R K, et al. Assessment and quality control of GPS occultation pressure. Trans Atmos Sci, 2021, 44(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202104005.htm
|
[29] |
Qian Y F, Shi D P. Numerical prediction experiment of vertical interpolation method for height field. J Meteor Sci, 1990, 10(3): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199003001.htm
|
[30] |
Bengtsson L. Problems of Using Satellite Information in Numerieal Weather Predietion//Proc of a Technical Conference. ESA, 1979(SP-143): 87-100.
|
[31] |
Ren Q, Dong P M, Xue J S. The use of microwave satellite data affected by cloud in numerical forecast of typhoon. J Appl Meteor Sci, 2009, 20(2): 137-146. http://qikan.camscma.cn/article/id/20090202
|
[32] |
Zhou Y Q, Ou J J. The method of cloud vertical structure analysis using rawinsonde observation and its applied research. Meteor Mon, 2010, 36(11): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011011.htm
|
[33] |
Liu J, Wang X J. Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci, 2017, 28(6): 654-665. doi: 10.11898/1001-7313.20170602
|