参数 | 性能指标 |
雷达体制 | 有源相控阵 |
工作体制 | 双极化一维电子扫描 |
工作频率范围 | 9.3~9.5 GHz |
峰值发射功率 | 400 W |
天线增益 | 36 dB |
最快扫描时间 | 45 s |
距离分辨率 | 小于30 m |
定量探测距离 | 大于60 km |
最大波束数 | 1 |
扫描仰角 | 0°~60° |
天线最大旁瓣 | 不大于-23 dB |
最小波束宽度 | 1.8° |
交叉极化隔离度 | 不小于30 dB |
Citation: | Sun Yue, Ren Gang, Sun Hongping, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. DOI: 10.11898/1001-7313.20230106. |
Fig. 4 Time series of reflectivity top height with different ZH thresholds within the moving range of cell A detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021
(statistical area is the range of radar azimuth between 135° and 180°, black dashed line denotes 0℃ height)
Table 1 Basic performance parameters of X-band phased array dual polarization radar in Xi County
参数 | 性能指标 |
雷达体制 | 有源相控阵 |
工作体制 | 双极化一维电子扫描 |
工作频率范围 | 9.3~9.5 GHz |
峰值发射功率 | 400 W |
天线增益 | 36 dB |
最快扫描时间 | 45 s |
距离分辨率 | 小于30 m |
定量探测距离 | 大于60 km |
最大波束数 | 1 |
扫描仰角 | 0°~60° |
天线最大旁瓣 | 不大于-23 dB |
最小波束宽度 | 1.8° |
交叉极化隔离度 | 不小于30 dB |
[1] |
Huang M Y, Xu H Y, Zhou L. 40 year's hail suppression in China. Climatic Environ Res, 2000, 5(3): 318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003012.htm
|
[2] |
Lei H C, Hong Y C, Zhao Z, et al. Advances in cloud and precipitation physics and weather modification in recent years. Chinese J Atmos Sci, 2008, 32(4): 967-974. doi: 10.3878/j.issn.1006-9895.2008.04.21
|
[3] |
Zhou Y J, Zhang Y J, Qie X S, et al. The relationship between the variation of hail cloud system and its cloud to ground lightning in the east part of Gansu Province. Plateau Meteor, 1999, 18(2): 236-244. doi: 10.3321/j.issn:1000-0534.1999.02.013
|
[4] |
Yu X D, Zhou X G, Wang X M. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337. doi: 10.3969/j.issn.1004-4965.2012.03.003
|
[5] |
Wang F, Li F G. Assessment and improvement of CINRAD/CD hail detection algorithm. Meteor Sci Technol, 2009, 37(3): 345-348. doi: 10.3969/j.issn.1671-6345.2009.03.016
|
[6] |
Liu L P, Qian Y F, Wang Z J. The study of special distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi: 10.3321/j.issn:0577-6619.1996.05.008
|
[7] |
Liu L P. A theoretical study of estimations of rain and hail rates in mixed-phase areas with dual linear polarization radar. Chinese J Atmos Sci, 2002, 26(6): 761-772. doi: 10.3878/j.issn.1006-9895.2002.06.05
|
[8] |
Cao J W, Liu L P, Chen X H, et al. Data quality analysis of 3836 C-band dual-linear polarimetric weather radar and its observation of a rainfall process. J Appl Meteor Sci, 2006, 17(2): 192-200. doi: 10.3969/j.issn.1001-7313.2006.02.009
|
[9] |
Zhang J, Tian M, Zhu K Y. Analysis on the products and echo of dual-linear polarization Doppler weather radar. Plateau Mountain Meteor Res, 2010, 30(2): 36-41. doi: 10.3969/j.issn.1674-2184.2010.02.008
|
[10] |
Lin W, Zhang S S, Luo C R, et al. Observational analysis of different intensity severe convective clouds by S-band dual-polarization radar. Meteor Mon, 2020, 46(1): 63-72. doi: 10.3969/j.issn.1006-009X.2020.01.015
|
[11] |
Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403
|
[12] |
Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103
|
[13] |
Liu L P, Hu Z Q, Wu C. Development and application of dual linear polarization radar and phased-array radar. Adv Meteor Sci Tech, 2016, 6(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603009.htm
|
[14] |
Zrnic D S, Kimpel J F, Forsyth D E, et al. Agile-beam phased array radar for weather observations. Bull Amer Meteor Soc, 2007, 88(11): 1753-1766. doi: 10.1175/BAMS-88-11-1753
|
[15] |
Bluestein H B, French M M, Popstefanija I, et al. A mobile, phased-array Doppler radar for the study of severe convective storms. Bull Amer Meteor Soc, 2010, 91(5): 579-600. doi: 10.1175/2009BAMS2914.1
|
[16] |
Kim D, Suezawa T, Mega T. Improving precipitation nowcasting using a three-dimensional convolutional neural network model from multi parameter phased array weather radar observations. Atmos Res, 2021, 262: 105774. doi: 10.1016/j.atmosres.2021.105774
|
[17] |
Zhang Z Q, Liu L P. Preliminary application of phased array technology in weather radar. Plateau Meteor, 2011, 30(4): 1102-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104028.htm
|
[18] |
Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. doi: 10.3969/j.issn.1001-7313.2014.04.003
|
[19] |
Wu C, Liu L. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar. Adv Atmos Sci, 2014, 34(4): 814-824.
|
[20] |
Liu L P, Wu L L, Wu C, et al. Field experiment on convective precipitation by X-band phased-array radar and preliminary results. Chinese J Atmos Sci, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm
|
[21] |
Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi: 10.11898/1001-7313.20190101
|
[22] |
Cheng Y H, Fu P L, Hu D M, et al. The Guangzhou phased-array radar network scheme set-up and observation test. Meteor Mon, 2020, 46(6): 823-836. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006009.htm
|
[23] |
Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi: 10.11898/1001-7313.20220102
|
[24] |
Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi: 10.11898/1001-7313.20220206
|
[25] |
Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606
|
[26] |
Su Y Y, Liu L P. Comparison of mesocyclone identification results between S-band dual polarization radar and X-band phased array weather radar. Meteor Mon, 2022, 48(2): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202202008.htm
|
[27] |
Zhou Y Q, Chen B J, Xiao H, et al. A case study of hail suppression by AgI seeding using 3D hailstorm model. Chinese J Atmos Sci, 2003, 27(1): 8-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200301001.htm
|
[28] |
Lou X F, Shi Y, Lu G X. Numerical modeling of hailstorms with AgI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. doi: 10.11898/1001-7313.20160201
|
[29] |
Lou X F, Fu Y, Sun J. A numeral seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi: 10.11898/1001-7313.20190603
|
[30] |
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[31] |
Liang G, Yue Z G, Li Y, et al. A field experimental exploration of "rain falling after the cannon sounded". Shaanxi Meteor, 2009(6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200906009.htm
|
[32] |
Zhou H S, Liu L B, Liu X T, et al. Experimental Study on Precipitation Echo of Convective Cloud Affected by Explosion. 2006 Annual Meeting of China Meteorological Society, 2006.
|
[33] |
Xu H B. Practice and Theory-Hail Suppression in China. Beijing: China Meteorological Press, 2021.
|
[34] |
Xu H B. The possible dynamic mechanism of explosion in hail suppression. Acta Meteor Sinica, 2001, 59(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200101007.htm
|
[35] |
Duan Y, Xu H B. The possible cloud-micro physical mechanism of explosion in hail suppression. Acta Meteor Sinica, 2001, 56(3): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200103007.htm
|
[36] |
Xu H B. The Studies of Dynamics in Weather Modification. Beijing: China Meteorological Press, 2014.
|
[37] |
Hersbach H, Bell B, Berrisford P, et al. ERA5 Hourly Data on Pressure Levels from 1959 to Present. Copernicus Climate Change Service(C3S) Climate Data Store(CDS), 2018. DOI: 10.24381/cds.bd0915c6.
|
[38] |
Ryzhkov A V, Zrnic D S. Radar Polarimetry for Weather Observations. Cham, Switzerland: Springer Nature Switzerland AG, 2019.
|
[39] |
Feng L, Xiao H, Wen G, et al. Rain attenuation correction of reflectivity for X-Band dual-polarization radar. Atmosphere, 2016, 7(12): 164.
|
[40] |
Xiao L S, Hu D M, Chen S, et al. Study on attention correction algorithm of X-band dual-polarization phased array radar. Meteor Mon, 2021, 47(6): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106006.htm
|
[41] |
Xu H B, Tian L Q. Physical meaning of "cave channel" in strong convective storm with its application. J Appl Meteor Sci, 2008, 19(3): 372-379. http://qikan.camscma.cn/article/id/20080361
|
[42] |
Wang J H, Chen R M, Hu Z Q, et al. Dual Doppler radar observations and analysis of the structure of a severe hailstorm. Acta Meteor Sinica, 2020, 78(5): 796-804.
|
[43] |
Feng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurement. Climatic Environ Res, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm
|
[44] |
Zhang G, Mahale V N, Putnam B J, et al. Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv Atmos Sci, 2019, 36(6): 571-588.
|
[45] |
Yang T X, Yuan Z H. Simulation research on hydrometeor classification by multi-wavelength dual linear polarization Doppler radar. Plateau Meteor, 2017, 36(1): 241-255. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701023.htm
|
[46] |
Feng L, Xiao H, Luo L. Simulation of polarization characteristics and attenuation of dual-polarization rain-measurement radar with T-matrix methods. Chinese J Comput Phys, 2019, 36(2): 189-202. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201902007.htm
|
[47] |
Hall M P M, Cherry S M, Goddard J W F, et al. Raindrop sizes and rainfall rate measured by dual-polarization radar. Nature, 1980, 285(5762): 195-198.
|
[48] |
Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490.
|
[49] |
van Lier-Walqui M, Fridlind A M, Ackerman A S, et al. On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon Wea Rev, 2016, 144(2): 737-758.
|
[50] |
Gorgucci E, Chandrasekar V, Bringi V N, et al. Estimation of raindrop size distribution parameters from polarimetric radar measurements. J Atmos Sci, 2002, 59(15): 2373-2384.
|
[51] |
Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602
|