[1]
|
|
[2]
|
Ma S Q, Chen H B, Wang G, et, al. A miniature robotic plane meteorological sounding system. Adv Atmos Sci, 2004, 21(6): 890-896. doi: 10.1007/BF02915591
|
[3]
|
Reuder J, Brisset P, Jonassen M, et al. The small unmanned meteorological observer SUMO: A new tool for atmospheric boundary layer research. Meteorologische Zeitschrif, 2009, 18(2): 141-147. doi: 10.1127/0941-2948/2009/0363
|
[4]
|
Schmid B, Tomunson J M, Hubbe J M, et al. The DOE ARM aerial facility. Bull Amer Meteor Soc, 2014, 95(5): 723-742. doi: 10.1175/BAMS-D-13-00040.1
|
[5]
|
|
[6]
|
|
[7]
|
Shimura T. Estimation of wind vector profile using a hexarotor unmanned aerial vehicle and its application to meteorological observation up to 1000 m above surface. J Atmos Oceanic Technol, 2018, 35(8): 1621-1631. doi: 10.1175/JTECH-D-17-0186.1
|
[8]
|
Tao X Y, Huang J P, Xie X J, et al. Observational analysis of the influence of aerosol radiation effect on planetary boundary layer structure and entrainment characteristics. Atmos Sci, 2020, 44(6): 1213-1223.
|
[9]
|
Wang H B, Wu H, Li Y, et, al. Validation of rotorcraft UAV boundary layer meteorological observation data and its application in a heavy fog event in Yancheng. Meteor Mon, 2020, 46(1): 89-97.
|
[10]
|
Cassano J J. Observaations of atmospheric boundary layer temperature profiles with a small unmanned aerial vehicle. Antarctic Sci, 2014, 26(2): 205-213. doi: 10.1017/S0954102013000539
|
[11]
|
Shen H R. UAV Meteorological Observation Technology. Beijing: Tsinghua University Press, 2010.
|
[12]
|
|
[13]
|
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[14]
|
Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topgraphic cloud precipitation Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605
|
[15]
|
Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi: 10.11898/1001-7313.20210606
|
[16]
|
Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202
|
[17]
|
|
[18]
|
Roadman J, Elston J, Argrow B, et al. Mission performance of the tempest unmanned aircraft system in supercell storms. J Aircraft, 2012, 49(6): 1821-1830.
|
[19]
|
Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604
|
[20]
|
|
[21]
|
Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
|
[22]
|
Li Y, Ma S Q, Wang G R, et al. Characteristics of meteorological elements during Typhoon Kalmaegi observed by unmanned aerial vehicle. J Appl Meteor Sci, 2009, 20(5): 579-585. http://qikan.camscma.cn/article/id/20090509
|
[23]
|
Bates T S, Quinn P K, Johnson J E, et al. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems(UAS). Atmos Measur Tech, 2013, 6(8): 2115-2120.
|
[24]
|
Sitnikov N M, Borisov Y A, Chekulaev I I, et al. Returnable upper-air sonde based on unmanned or remotely-piloted aerial vehicles for atmospheric balloon sounding. Russian Meteor and Hydrol, 2014, 39(9): 634-638.
|
[25]
|
|
[26]
|
Garratt J R. Review: The Atmospheric boundary layer. Earth-Science Reviews, 1994, 37: 89-134.
|
[27]
|
Boer G D, Palo S, Argrow B, et al. The Pilatus unmanned aircraft system for lower atmospheric research. Atmos Measur Tech, 2016, 9(4): 1845-1857.
|
[28]
|
Lenschow D H. Probing the Atmospheric Boundary Layer. Zhou X J, et al, Translation. Beijing: China Meteorological Press, 1990.
|
[29]
|
|
[30]
|
Kimball S K, Montalvo C J, Mulekar M S. Assessing iMET-XQ performance and optimal placement on a small off-the-shelf, rotary-wing UAV, as a function of atmospheric conditions. Atmosphere, 2020, 11(6): 660.
|
[31]
|
Lee T R, Buban M, Dumas E, et al. On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns. Sensors, 2019, 19(1): 10.
|
[32]
|
Greene B R, Segales A R, Waugh S, et al. Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems. Atmos Measur Tech, 2018, 11: 5519-5530.
|
[33]
|
Nonami K, Kartidjo M, Yoon K J, et al. Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems. Japan: Springer Japan, 2013.
|
[34]
|
|
[35]
|
|
[36]
|
WMO. Guide to Instruments and Methods of Observation Volume Ⅰ-Measurement of Meteorological Variables. ISBN: 978-92-63-100085, 2018.
|