Zhang Dejun, Yang Shiqi, Zhu Hao, et al. Quantitative evaluation of heat island effect in Chongqing metropolitan circle. J Appl Meteor Sci, 2023, 34(1): 91-103. DOI: 10.11898/1001-7313.20230108.
Citation: Zhang Dejun, Yang Shiqi, Zhu Hao, et al. Quantitative evaluation of heat island effect in Chongqing metropolitan circle. J Appl Meteor Sci, 2023, 34(1): 91-103. DOI: 10.11898/1001-7313.20230108.

Quantitative Evaluation of Heat Island Effect in Chongqing Metropolitan Circle

More Information
  • With global warming and rapid urbanization, urban climate is considered to be one important factor impacting urban ecological environment, and the most obvious feature of urban climate is the surface urban heat island(SUHI). The accurate division of rural reference area is critical in evaluating the intensity of SUHI in mountainous cities by urban-rural dichotomy. Therefore, a comprehensive method is proposed based on multi-source satellite remote sensing data to solve this problem, and the spatiotemporal variation of the SUHI in Chongqing metropolitan circle from 2001 to 2020 are analyzed. The results show that the spatial distribution of rural reference area obtained by the comprehensive buffer method is obviously different from that by the traditional buffer method, and the main cause is the limitation of the elevation difference between urban and rural reference area. There are a large number of "false SUHI" pixels in the SUHI product estimated by the traditional buffer method, which makes the surface urban heat island regions obtained by the traditional buffer method significantly larger than that by the comprehensive buffer method. The spatiotemporal distribution results show that the regions affected by the SUHI are concentrated in the core area of Chongqing, Changshou, Fuling and nearby regions, and the cold island are concentrated in the high-altitude areas in the southeast of Chongqing and some mountains in the core of Chongqing. The interannual variation of the SUHI shows that the proportion of areas above strong SUHI level increases with time from 2001 to 2020, and the SUHI is strong in summer and weak in winter. The proportion of strong SUHI area increased from 0.5% in 2001 to 2.95% in 2020, with an average annual growth rate of 0.12%. The proportion of intense heat island area increased from 0.21% in 2001 to 0.78% in 2019, with an average annual growth rate of 0.03%. The change of SUHI is closely related to urban development, and has a significant positive correlation with the economic driving factors such as the total population of the main city and metropolitan area, urban population, GDP, total energy consumption, urban built-up area and civil vehicle ownership. The correlation coefficients are 0.91, 0.94, 0.95, 0.94, 0.90 and 0.96, respectively, indicating that the driving factors of urban economy play an obvious role in promoting the change of SUHI intensity in the main metropolitan area.
  • Fig  1.   Digital elevation and land-cover of the metropolitan circle of Chongqing

    Fig  2.   Rural reference map of the metropolitan circle of Chongqing extracted at the scale from 5 km to 25 km based on traditional buffer algorithm and comprehensive buffer algorithm

    Fig  3.   Rural reference areas of the metropolitan circle of Chongqing extracted at 25 km scale by traditional buffer algorithm and comprehensive buffer algorithm, city area and area of nighttime light great than 15 from 2001 to 2020

    Fig  4.   Spatial distribution of the surface urban heat island in the metropolitan circle of Chongqing estimated by traditional buffer algorithm and comprehensive buffer algorithm

    Fig  5.   Areas variation of the surface urban heat island in the metropolitan circle of Chongqing with buffer zone scale increasing from 5 km to 25 km in summer of 2020

    Fig  6.   Areas of different surface urban heat island level in the metropolitan circle of Chongqing at different buffer zone scales in summer of 2020

    Fig  7.   Annual spatial distribution of surface urban heat island in the metropolitan areas of Chongqing

    Fig  8.   Area changes of surface urban heat island in the metropolitan areas of Chongqing from 2001 to 2020

    Fig  9.   Seasonal spatial distribution of surface urban heat island in metropolitan circle of Chongqing in 2020

    Fig  10.   Scatter plots of the economic factors and the areas of surface urban heat island in the metropolitan circle of Chongqing from 2001 to 2020

  • [1]
    Li K N, Chen Y H, Wang M J, et al.Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China.Sci Total Environ, 2019, 669:229-247. DOI: 10.1016/j.scitotenv.2019.03.100
    [2]
    Meng Q Y, Zhang L L, Sun Z H, et al. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens Environ, 2018, 204: 826-837. DOI: 10.1016/j.rse.2017.09.019
    [3]
    石涛, 杨元建, 马菊, 等. 基于MODIS的安徽省代表城市热岛效应时空特征. 应用气象学报, 2013, 24(4): 484-494. DOI: 10.3969/j.issn.1001-7313.2013.04.011

    Shi T, Yang Y J, Ma J, et al. Spatial-temporal characteristics of urban heat island in typical cities of Anhui Province based on MODIS. J Appl Meteor Sci, 2013, 24(4): 484-494. DOI: 10.3969/j.issn.1001-7313.2013.04.011
    [4]
    Li Y F, Schubert S, Kropp J P, et al. On the influence of density and morphology on the urban heat island intensity. Nat Commun, 2020, 11: 2647. DOI: 10.1038/s41467-020-16461-9
    [5]
    林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征. 应用气象学报, 2021, 32(3): 302-314. DOI: 10.11898/1001-7313.20210304

    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. DOI: 10.11898/1001-7313.20210304
    [6]
    Gaur A, Eichenbaum M K, Simonovic S P. Analysis and modelling of surface urban heat island in 20 Canadian cities under climate and land-cover change. J Environ Manag, 2018, 206: 145-157. DOI: 10.1016/j.jenvman.2017.10.002
    [7]
    田武文, 黄祖英, 胡春娟. 西安市气候变暖与城市热岛效应问题研究. 应用气象学报, 2006, 17(4): 438-443. DOI: 10.3969/j.issn.1001-7313.2006.04.007

    Tian W W, Huang Z Y, Hu C J. Research on climate warming and urban heat island in Xi'an. J Appl Meteor Sci, 2006, 17(4): 438-443. DOI: 10.3969/j.issn.1001-7313.2006.04.007
    [8]
    Li H D, Zhou Y Y, Li X M, et al. A new method to quantify surface urban heat island intensity. Sci Total Environ, 2018, 624: 262-272. DOI: 10.1016/j.scitotenv.2017.11.360
    [9]
    佟华, 刘辉志, 李延明, 等. 北京夏季城市热岛现状及楔形绿地规划对缓解城市热岛的作用. 应用气象学报, 2005, 16(3): 357-366. DOI: 10.3969/j.issn.1001-7313.2005.03.009

    Tong H, Liu H Z, Li Y M, et al. Actuality of summer urban heat island and the impact of urban planning "wedge shaped greenland" to reducing the intensity of urban heat island in Beijing. J Appl Meteor Sci, 2005, 16(3): 357-366. DOI: 10.3969/j.issn.1001-7313.2005.03.009
    [10]
    Yao R, Wang L C, Huang X, et al. The influence of different data and method on estimating the surface urban heat island intensity. Ecol Indic, 2018, 89: 45-55. DOI: 10.1016/j.ecolind.2018.01.044
    [11]
    陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比. 应用气象学报, 2022, 33(4): 466-476. DOI: 10.11898/1001-7313.20220407

    Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. DOI: 10.11898/1001-7313.20220407
    [12]
    Yang S Q, Zhang D J, Sun L, et al. Assessing drought conditions in cloudy regions using reconstructed land surface temperature. J Meteor Res, 2020, 34: 264-279. DOI: 10.1007/s13351-020-9136-4
    [13]
    杨磊, 韩丽娟, 宋金玲, 等. 基于遥感数据的夏玉米高温热害监测评估. 应用气象学报, 2020, 31(6): 749-758. DOI: 10.11898/1001-7313.20200610

    Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. DOI: 10.11898/1001-7313.20200610
    [14]
    Cui F Q, Hamdi R F, Yuan X L, et al. Quantifying the response of surface urban heat island to urban greening in global north megacities. Sci Total Environ, 2021, 801: 149553. DOI: 10.1016/j.scitotenv.2021.149553
    [15]
    Ranagalage M, Dissanayake D, Murayama Y, et al. Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS Int J Geo-Inf, 2018, 7(9): 341. DOI: 10.3390/ijgi7090341
    [16]
    Schwarz N, Lautenbach S, Seppelt R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens Environ, 2011, 115: 3175-3186. DOI: 10.1016/j.rse.2011.07.003
    [17]
    郑祚芳, 范水勇, 王迎春. 城市热岛效应对北京夏季高温的影响. 应用气象学报, 2006, 17(增刊Ⅰ): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1006.htm

    Zheng Z F, Fan S Y, Wang Y C. Effects of urban heat island on summer high temperature in Beijing. J Appl Meteor Sci, 2006, 17(Suppl Ⅰ): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1006.htm
    [18]
    李双双, 杨赛霓, 张东海, 等. 近54年京津冀地区热浪时空变化特征及影响因素, 应用气象学报, 2015, 26(5): 545-554. DOI: 10.11898/1001-7313.20150504

    Li S S, Yang S N, Zhang D H, et al. Spatiotemporal variability of heat waves in Beijing-Tianjin-Hebei Region and influencing factors in recent 54 years. J Appl Meteor Sci, 2015, 26(5): 545-554. DOI: 10.11898/1001-7313.20150504
    [19]
    刘勇洪, 房小怡, 张硕, 等. 京津冀城市群城市热岛定量评估. 生态学报, 2017, 37(17): 5818-5835.

    Liu Y H, Fang X Y, Zhang S, et al. Research on quantitative evaluations of heat islands for the Beijing-Tianjin-Hebei urban agglomeration. Acta Ecologica Sinica, 2017, 37(17): 5818-5835.
    [20]
    Martin P, Baudouin Y, Cachon P. An alternative method to characterize the surface urban heat island. Int J Biometeorol, 2015, 59(7): 849-861. DOI: 10.1007/s00484-014-0902-9
    [21]
    唐国利, 任国玉, 周江兴. 西南地区城市热岛强度变化及对地面气温序列影响. 应用气象学报, 2008, 19(6): 722-730. http://qikan.camscma.cn/article/id/20080612

    Tang G L, Ren G Y, Zhou J X. Change of urban heat island intensity and its effect on surface mean air temperature records in Southwest China. J Appl Meteor Sci, 2008, 19(6): 722-730. http://qikan.camscma.cn/article/id/20080612
    [22]
    Haashemi S, Weng Q H, Darvishi A, et al. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens, 2016, 8(4): 352. DOI: 10.3390/rs8040352
    [23]
    刘勇洪, 栾庆祖, 权维俊, 等. 基于多源卫星资料的京津唐城市群热环境研究. 生态环境学报, 2015, 24(7): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201507012.htm

    Liu Y H, Luan Q Z, Quan W J, et al. Research on heat environment of Beijing-Tianjin-Tangshan urban group based on multisource satellite data. Ecology and Environment Sciences, 2015, 24(7): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201507012.htm
    [24]
    孟凡超, 任国玉, 郭军, 等. 城市热岛效应对天津市居住建筑供暖和制冷负荷的影响. 地理科学进展, 2020, 39(8): 1296-1307.

    Meng F C, Ren G Y, Guo J, et al. Impact of urban heat island effect on the heating and cooling loads of residential buildings in Tianjin City, China. Progress in Geography, 2020, 39(8): 1296-1307.
    [25]
    Lai J, Zhan W, Huang F, et al. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sens Environ, 2018, 217: 203-220.
    [26]
    邓玉娇, 杜尧东, 王捷纯, 等. 粤港澳大湾区城市热岛时空特征及驱动因素. 生态学杂志, 2020, 39(8): 2671-2677.

    Deng Y J, Du Y D, Wang J C, et al. Spatiotemporal characteristics and driving factors of urban heat islands in Guangdong-Hong Kong-Marco Greater Bay Area. Chinese J Ecology, 2020, 39(8): 2671-2677.
    [27]
    Jin M, Dickinson R E, Zhang D. The footprint of urban areas on global climate as characterized by MODIS. J Climate, 2005, 18: 1551-1565.
    [28]
    Zhou D C, Bonafoni S, Zhang L X, et al. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci Total Environ, 2018, 628/629: 415-429.
    [29]
    李永华, 高阳华, 韩逢庆, 等. 重庆地区年气温与降水量变化特征及对NPP的影响. 应用气象学报, 2007, 18(1): 73-79. http://qikan.camscma.cn/article/id/20070113

    Li Y H, Gao Y H, Han F Q, et al. Features of annual temperature and precipitation variety with the effects on NPP in Chongqing. J Appl Meteor Sci, 2007, 18(1): 73-79. http://qikan.camscma.cn/article/id/20070113
    [30]
    田甜, 牟凤云, 王俊秀, 等. 重庆市主城区土地利用变化对地表径流的影响. 水土保持研究, 2021, 28(4): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104019.htm

    Tian T, Mou F Y, Wang J X, et al. Impact of land use change on surface runoff in the main urban area of Chongqing. Research of Soil and Water Conservation, 2021, 28(4): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202104019.htm
    [31]
    Wan Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens Environ, 2014, 140: 36-45.
    [32]
    Wan Z M, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens, 1996, 34(4): 892-905.
    [33]
    Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans Geosci Remote Sens, 1997, 35: 980-996.
    [34]
    Wan Z. New refinements and validation of the MODIS land-surface temperature/emissivity product. Remote Sens Environ, 2008, 112: 59-74.
    [35]
    Duan S B, Li Z L, Wu H, et al. Radiance-based validation of land surface temperature products derived from collection 6 MODIS thermal infrared data. Int J Appl Earth Obs Geoinformation, 2018, 70: 84-92.
    [36]
    Abercrombie S P, Friedl M A. Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans Geosci Remote Sens, 2016, 54(2): 703-713.
    [37]
    Moon M, Zhang X, Henebry G M, et al. Long-term continuity in land surface phenology measurements: A comparative assessment of the MODIS land cover dynamics and VⅡRS land surface phenology products. Remote Sens Environ, 2019, 226: 74-92.
    [38]
    Hufkens K, Friedl M, Sonnentag O, et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens Environ, 2012, 117: 307-321. http://www.uvm.edu/femc/attachments/project/1121/Hufkens_etal_2012.pdf
    [39]
    Zhang X, Liu L, Yan D. Comparisons of global land surface seasonality and phenology derived from AVHRR, MODIS, and VⅡRS data. J Geophys Res Biogeosci, 2017, 122(6): 1506-1525.
    [40]
    Shi K, Chen Y, Yu B, et al. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl Energy, 2016, 184: 50-463.
    [41]
    Hu Y, Chen J, Cao X, et al. Correcting the saturation effect in DMSP/OLS stable nighttime light products based on radiance-calibrated data. IEEE Trans Geosci Remote Sens, 2022, 60: 1-11.
    [42]
    杜海波, 魏伟, 张学渊, 等. 黄河流域能源消费碳排放时空格局演变及影响因素——基于DMSP/OLS与NPP/VⅡRS夜间灯光数据. 地理研究, 2021, 40(7): 2051-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202107014.htm

    Du H B, Wei W, Zhang X Y, et al. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin: Based on the DMSP/OLS and NPP/VⅡRS nighttime light data. Geographical Research, 2021, 40(7): 2051-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202107014.htm
    [43]
    叶彩华, 刘勇洪, 刘伟东, 等. 城市地表热环境遥感监测指标研究及应用. 气象科技, 2011, 39(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201101019.htm

    Ye C H, Liu Y H, Liu W D, et al. Research on urban surface heat environment monitoring indexes and its application. Meteor Sci Technol, 2011, 39(1): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201101019.htm
    [44]
    陈颖锋, 王玉宽, 傅斌, 等. 成渝城市群城镇化的热岛效应. 生态学杂志, 2015, 34(12): 3494-3501. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201512031.htm

    Cheng Y F, Wang Y K, Fu B, et al. Heat island effect during the process of urbanization in Chengdu-Chongqing urban agglomeration. Chinese J Ecology, 2015, 34(12): 3494-3501. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201512031.htm
    [45]
    廖代强, 朱浩楠, 姜平, 等. 卫星遥感在城市化和城市热岛监测中的应用. 气象科技进展, 2021, 11(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202102016.htm

    Liao D Q, Zhu H N, Jiang P, et al. Application of satellite remote sensing in urbanization and urban heat island monitoring. Adv Meteor Sci Tech, 2021, 11(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202102016.htm
    [46]
    陈艳英, 赵磊, 梅勇, 等. 基于MODIS地表温度的重庆城市热岛研究. 南通大学学报(自然科学版), 2016, 15(3): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK201603010.htm

    Chen Y Y, Zhao L, Mei Y, et al. Study on urban heat island based on MODIS land surface temperature in Chongqing. Journal of Nantong University(Nat Sci Ed), 2016, 15(3): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK201603010.htm
    [47]
    何泽能, 李永华, 陈志军, 等. 重庆市2006年夏季城市热岛分析. 热带气象学报, 2008, 24(5): 527-532. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200805014.htm

    He Z N, Li Y H, Chen Z J, et al. Analysis of the urban heat island in 2006 summer in Chongqing city. J Trop Meteor, 2008, 24(5): 527-532. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200805014.htm
    [48]
    何泽能, 杨世琦, 唐晓萍, 等. 重庆市城市热岛研究的现状需求和建议. 高原山地气象研究, 2010, 30(4): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201004016.htm

    He Z N, Yang S Q, Tang X P, et al. The actuality, demands and suggestions of urban heat island research in Chongqing. Plateau and Mountain in Meteorology Research, 2010, 30(4): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201004016.htm
    [49]
    孙俊杰. 天气系统对城市大气颗粒物与热岛效应影响研究. 长沙: 中南大学, 2014.

    Sun J J. Impact of Synoptic System on the Urban Atmospheric Particles and Urban Heat Island. Changsha: Central South University, 2014.
  • Related Articles

    [1]Zhang Hailong, Zhu Shanyou, Gao Yang, Zhang Guixin. The Relationship Between Urban Spatial Morphology Parameters and Urban Heat Island Intensity Under Fine Weather Condition[J]. Journal of Applied Meteorological Science, 2016, 27(2): 249-256. DOI: 10.11898/1001-7313.20160213
    [2]Meng Zhaoyang, Xie Yulin, Jia Shihui, Zhang Rui, Lin Weili, Xu Xiaobin, Yang Wen. Characteristics of Atmospheric Ammonia at Gucheng, a Rural Site on North China Plain in Summer of 2013[J]. Journal of Applied Meteorological Science, 2015, 26(2): 141-150. DOI: 10.11898/1001-7313.20150202
    [3]Dou Jingjing, Wang Yingchun, Miao Shiguang. Fine Spatial and Temporal Characteristics of Humidity and Wind in Beijing Urban Area[J]. Journal of Applied Meteorological Science, 2014, 25(5): 559-569.
    [4]Shi Tao, Yang Yuanjian, Ma Ju, Zhang Li, Luo Sufeng. Spatial-temporal Characteristics of Urban Heat Island in Typical Cities of Anhui Province Based on MODIS[J]. Journal of Applied Meteorological Science, 2013, 24(4): 484-494.
    [5]Tang Guoli, Ren Guoyu, Zhou Jiangxing. Change of Urban Heat Island Intensity and Its Effect on Surface Mean Air Temperature Records in Southwest China[J]. Journal of Applied Meteorological Science, 2008, 19(6): 722-730.
    [6]zhang huining, Zhang Yiping, Peng Yunchuan, Zhou Yue, Peng Guifen. Thermal Effects of Architecture Surface in Kunming and Beijing[J]. Journal of Applied Meteorological Science, 2008, 19(5): 573-581.
    [7]Tian Wuwen, Huang Zuying, Hu Chunjuan. Research on Climate Warming and Urban Heat Island in Xi'an[J]. Journal of Applied Meteorological Science, 2006, 17(4): 438-443.
    [8]Tong Hua, Liu Huizhi, Li Yanming, Sang Jianguo, Hu Fei. Actuality of Summer Urban Heat Island and the Impact of Urban Planning “Wedge-shaped Greenland” to Reducing the Intensity of Urban Heat Island in Beijing[J]. Journal of Applied Meteorological Science, 2005, 16(3): 357-366.
    [9]Yang Yuhua, Xu Xiangde, Weng Yonghui. Simulation of Daily Cycle of Boundary Layer Heat Island in Beijing[J]. Journal of Applied Meteorological Science, 2003, 14(1): 61-68.
    [10]Mao Xianmin, Liu Guifeng, Liu Sujie. A Study of Urban and Country Fire Forecasting Model[J]. Journal of Applied Meteorological Science, 1996, 7(1): 76-81.
  • Cited by

    Periodical cited type(6)

    1. 饶智杰,张德军,廖文超,户晓琴. 基于风云3号气象卫星数据的四川盆地干旱监测. 沙漠与绿洲气象. 2025(01): 49-57 .
    2. 林依宁,曾燕,邱新法. 南京市局地环境气温效应. 气象科学. 2025(01): 145-154 .
    3. 胡锐,陈睿智. 成都自生草本植物屋顶绿化夏季气候适应性研究. 风景园林. 2024(04): 104-110 .
    4. 王涛,宋苗,侯秋月. 基于劈窗算法的重庆市地表温度反演及其应用研究. 现代信息科技. 2024(15): 93-98 .
    5. 李佳杰,邢忠,李旭. 基于电路理论的城市高温控制优先区域识别——以重庆市中心城区为例. 中国园林. 2024(11): 97-103 .
    6. 杨翠芹,何伟,邾茂盛,贾臻,徐昭,杨文. 基于气象站和MODIS数据合肥地区城市热岛评价. 中国环境科学. 2023(S1): 243-250 .

    Other cited types(9)

Catalog

    Figures(10)

    Article views3757 PDF downloads123 Cited by: 15
    • Received : 2022-07-05
    • Accepted : 2022-10-08
    • Published : 2023-01-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return