Bai Hua, Yuan Chao, Pan Xiao, et al. Environmental characteristics of extratropical cyclone tornadoes in Liaoning. J Appl Meteor Sci, 2023, 34(1): 104-116. DOI:  10.11898/1001-7313.20230109.
Citation: Bai Hua, Yuan Chao, Pan Xiao, et al. Environmental characteristics of extratropical cyclone tornadoes in Liaoning. J Appl Meteor Sci, 2023, 34(1): 104-116. DOI:  10.11898/1001-7313.20230109.

Environmental Characteristics of Extratropical Cyclone Tornadoes in Liaoning

DOI: 10.11898/1001-7313.20230109
  • Received Date: 2022-07-27
  • Rev Recd Date: 2022-10-24
  • Publish Date: 2023-01-31
  • Liaoning is one of the active regions for tornadoes in China, and the generation of a considerable number of tornadoes is associated with extratropical cyclones. In order to improve the understanding of environmental background and physical parameter characteristics, 42 extratropical cyclone tornadoes in Liaoning from 1979 to 2020 are statistically analyzed. The study is based on the reanalysis data of ERA5(ECMWF Reanalysis V5), combining with records of China Meteorological Disaster Classic and China Meteorological Disaster Yearbook. Results show that extratropical cyclone tornadoes are mainly distributed in the central and western Liaohe Plain and along the coast of the Bohai Bay. Significant tornadoes(EF2 and above) account for 28.6% of all extratropical cyclone tornadoes.Extratropical cyclone tornadoes occur mostly in the southwest and southeast quadrants of extratropical cyclones, corresponding to the warm area before the cold front. The high-value area of the storm relative helicity and convective available potential energy(CAPE) appear in the southwest-southeast quadrant of the extratropical cyclones, with a belt-like distribution. Extratropical cyclone tornadoes are mainly distributed within 1° of latitude in the northwest of the large-value area of storm relative helicity and the strong gradient area at the top of the large-value area of CAPE. The strong tornado parameter(STP) center is located near the -2° of longitude distance and -5° of latitude distance from the center of tornadic extratropical cyclones, and the maximum value is above 0.7. The large value area of STP corresponds to the high-incidence area of EF2 and above extratropical cyclone tornadoes. The cold front and dry line in the surface are the key trigger of extratropical cyclone tornadoes, and the induced tornadoes are mainly distributed near the warm ridge of temperature field and the top of the tongue of humidity field. Comparing the vertical distribution of humidity near the center of tornadic extratropical cyclones and the tail of the cold front, the strong cold pool caused by the strong high-level dry intrusion can generate excessively strong downdraft, which may be an unfavorable factor for tornado formation. Extratropical cyclone tornadoes are mostly distributed in the distributary area of the left air flow of the upper-level jet, corresponding to the strong upper-level divergence area. The large value area of 0-3 km vertical temperature lapse rate has a good correspondence with the high incidence area of weak tornadoes near the center of extratropical cyclones.
  • Fig. 1  Sounding and ERA5 at Jinzhou Station from Jun to Aug in 2020

    Fig. 2  Distribution of extratropical cyclone tornado in Liaoning from 1979 to 2020

    (the shaded denotes altitude;the blue mark denotes tornado)

    Fig. 3  Spatial distribution of tornado relative to the center of extratropical cyclone

    (the black isoline denotes the height at 900 hPa, unit:dagpm;the barb denotes wind at 900 hPa; the shaded denotes relative vorticity at 900 hPa; the blue mark denotes tornado;the blue isoline denotes the kernel density estimation of tornadoes, the innermost(outermost) circle is 90%(10%); the center of extratropical cyclone is located at (0, 0))

    Fig. 4  Distribution of 0-1 km storm relative helicity (the shaded) near tornadic extratropical cyclone

    (the black isoline denotes the height at 900 hPa, unit:dagpm;the barb denotes wind at 900 hPa; the blue mark denotes tornado;the center of extratropical cyclone is located at (0, 0))

    Fig. 5  Distribution of convective available potential energy (the shaded) near tornadic extratropical cyclone

    (the others same as in Fig. 4)

    Fig. 6  Distribution of strong tonado parameter (the shaded) near tornadic extratropical cyclone

    (the others same as in Fig. 4)

    Fig. 7  Distribution of temperature at 2 m (the shaded) (a), dew point temperature at 2 m (the shaded) (b) near tornadic extratropical cyclone

    (the black isoline denotes the sea level pressure, unit:hPa;the barb denotes the wind at 10 m; the blue mark denotes tornado;the center of extratropical cyclone is located at (0, 0))

    Fig. 8  Spatial vertical section along AA′(a) and BB′(b) in Fig. 7a

    (the red isoline denotes temperature, unit:℃;the black isoline denotes the vertical speed, unit:10 Pa·s-1;the shaded denotes the relative humidity)

    Fig. 9  Distribution of weather situation field at 200 hPa near tornadic extratropical cyclone

    (the black isoline denotes the height at 200 hPa, unit:dagpm;the brown isoline denotes the velocity at 200 hPa, unit:m·s-1;the blue isoline denotes 90% kernel density estimation of tornadoes; the vector denotes the wind at 200 hPa; the shaded denotes the divergence at 200 hPa)

    Fig. 10  Distribution of temperature difference from ground to 3 km (the shaded) near tornadic extratropical cyclone

    (the others same as in Fig. 4)

    Fig. 11  Typical synoptic patterns of extratropical cyclone tornado in Liaoning

    Table  1  Extratropical cyclone tornado in Liaoning from 1979 to 2020

    序号 时间 龙卷发生地 强度等级 来源
    1 1980-06-20 兴城 EF2 《中国气象灾害大典》(辽宁卷)
    2 1980-07-21 辽阳县 EF2 《中国气象灾害大典》(辽宁卷)
    3 1983-07-04 瓦房店 EF0 地面观测
    4 1983-07-21 瓦房店 EF1 《中国气象灾害大典》(辽宁卷)
    5 1983-09-14 普兰店 EF1 《中国气象灾害大典》(辽宁卷)
    6 1983-09-14 绥中 EF2 《中国气象灾害大典》(辽宁卷)
    7 1984-05-27 义县 EF2 县级历史气象灾情收集资料
    8 1984-06-09 喀左 EF0 县级历史气象灾情收集资料
    9 1985-06-10 建昌 EF0 县级历史气象灾情收集资料
    10 1986-07-14 苏家屯 EF2 《辽宁省志》(气象志)
    11 1986-07-14 黑山 EF2 《辽宁省志》(气象志)
    12 1986-07-14 葫芦岛 EF1 县级历史气象灾情收集资料
    13 1986-07-22 阜新县 EF0 县级历史气象灾情收集资料
    14 1986-08-08 康平 EF2 县级历史气象灾情收集资料
    15 1986-08-12 阜新县 EF1 县级历史气象灾情收集资料
    16 1987-06-19 朝阳县 EF1 县级历史气象灾情收集资料
    17 1987-07-13 营口 EF0 地面观测
    18 1988-09-06 北票 EF1 《辽宁省志》(气象志)
    19 1988-09-06 阜新县 EF2 《辽宁省志》(气象志)
    20 1989-06-24 阜新县 EF1 县级历史气象灾情收集资料
    21 1989-05-18 阜新县 EF1 县级历史气象灾情收集资料
    22 1990-06-22 大洼 EF1 县级历史气象灾情收集资料
    23 1990-08-12 辽阳县 EF3 《辽宁省志》(气象志)
    24 1991-07-15 阜新县 EF0 县级历史气象灾情收集资料
    25 1992-08-10 黑山 EF2 《辽宁省志》(气象志)
    26 1993-06-06 葫芦岛 EF1 县级历史气象灾情收集资料
    27 1993-06-07 新民 EF0 县级历史气象灾情收集资料
    28 1993-08-12 彰武 EF1 县级历史气象灾情收集资料
    29 1996-09-19 庄河 EF1 县级历史气象灾情收集资料
    30 1998-05-26 康平 EF1 县级历史气象灾情收集资料
    31 2000-07-13 葫芦岛 EF1 县级历史气象灾情收集资料
    32 2000-08-23 黑山 EF1 县级历史气象灾情收集资料
    33 2002-07-31 辽中 EF1 地面观测
    34 2005-06-01 绥中 EF1 县级历史气象灾情收集资料
    35 2005-06-10 朝阳县 EF3 《中国气象灾害年鉴》
    36 2005-06-11 沈阳 EF0 县级历史气象灾情收集资料
    37 2005-07-01 盘山 EF0 县级历史气象灾情收集资料
    38 2005-08-10 盖州 EF1 县级历史气象灾情收集资料
    39 2010-07-27 彰武 EF1 县级历史气象灾情收集资料
    40 2012-06-04 铁岭县 EF2 县级历史气象灾情收集资料
    41 2012-07-02 大连 EF0 县级历史气象灾情收集资料
    42 2013-09-06 大连 EF0 县级历史气象灾情收集资料
    DownLoad: Download CSV
  • [1]
    Fan W J, Yu X D. Characteristics of spatial-temporal distribution of tornadoes in China. Meteor Mon, 2015, 41(7): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201507001.htm
    [2]
    Zheng Y G. Review of climatology and favorable environmental conditions of tornado in China. Adv Meteor Sci Tech, 2020, 10(6): 69-75. doi:  10.3969/j.issn.2095-1973.2020.06.012
    [3]
    Wei W X, Zhao Y M. Characteristic of tornadoes in China. Meteor Mon, 1995, 21(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.007.htm
    [4]
    Yao Y Q, Yu X D, Zhang Y J, et al. Climate analysis of tornadoes in China. J Meteor Res, 2015, 29(3): 359-369. doi:  10.1007/s13351-015-4983-0
    [5]
    Cai K Z, Yao X P, Sun X W, et al. Climatic characteristics and environmental conditions of tornadoes in Liaoning under the background of cold vortex. Acta Meteor Sinica, 2022, 80(1): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201006.htm
    [6]
    Yuan C, Wang S G, Ma X Y, et al. Environmental background and formative mechanisms of a tornado occurred in Kaiyuan on 3 July 2019. Plateau Meteor, 2021, 40(2): 384-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102015.htm
    [7]
    Davies-Jones R, Trapp R J, Bluestein H B. Tornadoes and Tornadic Storms//Doswell Ⅲ C A. Severe Convective Storms. Boston, MA: American Meteorological Society, 2001: 167-221.
    [8]
    Marquis J N, Richardson Y P, Markowski P M, et al. Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon Wea Rev, 2012, 140(1): 3-27. doi:  10.1175/MWR-D-11-00025.1
    [9]
    Trapp R J, Weisman M L. Low-level mesovortices within squall lines and bow echoes. Part Ⅱ: Their genesis and implications. Mon Wea Rev, 2003, 131(2): 804-823.
    [10]
    Atkins N T, Laurent S T. Bow echo mesovortices. Part Ⅱ: Their genesis. Mon Wea Rev, 2009, 137(5): 1514-1532. doi:  10.1175/2008MWR2650.1
    [11]
    Wakimoto R M, Wilson J W. Non-supercell tornadoes. Mon Wea Rev, 1989, 117(6): 1113-1140. doi:  10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2
    [12]
    Yu X D, Zhao J, Fan W J. Tornadoes in China: Spatiotemporal distribution and environmental characteristics. J Trop Meteor, 2021, 37(SupplⅠ): 681-692. doi:  10.16032/j.issn.1004-4965.2021.064
    [13]
    Johns R H, Davies J M, Leftwich P W. An Examination of the Relationship of 0-2 km AGL "Positive" Wind Shear to Potential Buoyant Energy in Strong and Violent Tornado Situation//16th Conference on Severe Local Storms. Alber, American Meteorological Society, 1990: 593-598.
    [14]
    Rasmussen E N, Blanchard D O. A baseline climatology of sounding derived supercell and tornado forecast parameters. Wea Forecasting, 1998, 13(4): 1148-1164. doi:  10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
    [15]
    Brooks H E, Lee J W, Craven J P. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos Res, 2003, 67/68: 73-94. doi:  10.1016/S0169-8095(03)00045-0
    [16]
    Craven J P, Brooks H E, Hart J A, et al. Baseline climatology of sounding derived parameters associated with deep moist convection. Natl Wea Dig, 2004, 28: 13-24.
    [17]
    Johns R H, Doswell C A. Severe local storms forecasting. Wea Forecasting, 1992, 7(4): 588-612. doi:  10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
    [18]
    Stensrud D J, Cortinas J V, Brooks H E. Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea Forecasting, 1997, 12(3): 613-632. doi:  10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2
    [19]
    Gaffin D M, Parker S S. A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachian region. Wea Forecasting, 2006, 21(5): 735-751. doi:  10.1175/WAF951.1
    [20]
    Tochimoto E, Niino H. Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Mon Wea Rev, 2016, 144(3): 945-969. doi:  10.1175/MWR-D-15-0015.1
    [21]
    Rasmussen E N, Richardson S, Straka J M, et al. The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon Wea Rev, 2000, 128(1): 174-191. doi:  10.1175/1520-0493(2000)128<0174:TAOSTW>2.0.CO;2
    [22]
    Mercer A E, Shafer C M, Doswell C A, et al. Objective classification of tornadic and nontornadic severe weather outbreaks. Mon Wea Rev, 2009, 137(12): 4355-4368. doi:  10.1175/2009MWR2897.1
    [23]
    Mercer A E, Shafer C M, Doswell C A, et al. Synoptic composites of tornadic and nontornadic outbreaks. Mon Wea Rev, 2012, 140(8): 2590-2608. doi:  10.1175/MWR-D-12-00029.1
    [24]
    Shafer C M, Mercer A E, Doswell C A, et al. Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synoptic-scale input. Mon Wea Rev, 2009, 137(4): 1250-1271. doi:  10.1175/2008MWR2597.1
    [25]
    Shafer C M, Mercer A E, Leslie L M, et al. Evaluation of WRF model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Mon Wea Rev, 2010, 138(11): 4098-4119. doi:  10.1175/2010MWR3269.1
    [26]
    Schultz D M, Winters A C, Colle B A, et al. Extratropical cyclones: A century of research on meteorology's centerpiece. Meteor Monogr, 2019, 59: 16.1-16.56. doi:  10.1175/AMSMONOGRAPHS-D-18-0015.1
    [27]
    Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi:  10.11898/1001-7313.20200504
    [28]
    Hamill T M, Schneider R S, Brooks H E, et al. The May 2003 extended tornado outbreak. Bull Amer Meteor Soc, 2005, 86(4): 531-542. doi:  10.1175/BAMS-86-4-531
    [29]
    Niino H, Fujitani T, Watanabe N. A statistical study of tornadoes and waterspouts in Japan from 1961 to 1993. J Climate, 2010, 10(7): 1730-1752.
    [30]
    He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401
    [31]
    Zhang J G, Wang J, Wu T, et al. Weather system types of extreme precipitation in the middle reaches of the Yangtze River. Torrential Rain Disaster, 2018, 37(1): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201801003.htm
    [32]
    Liu S, Li D Q, Sai H, et al. The physical mechanism and strong precipitation in Northeast China analysis during Typhoon "Lionrock" merging into extratropical cyclone process. Plateau Meteor, 2019, 38(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201904013.htm
    [33]
    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [34]
    Xu J M. Satellite imagery characteristics for extratropical cyclones and meiyu fronts. Adv Meteor Sci Tech, 2021, 11(3): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202103008.htm
    [35]
    Wang X M, Yu X D, Zhou X G. Study of Northeast China torandoes: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm
    [36]
    Yang W, Fang Y, Jiang S, et al. Characteristics of the waterspout in East Dongting Lake on 13 August 2017. J Appl Meteor Sci, 2020, 31(3): 328-338. doi:  10.11898/1001-7313.20200307
    [37]
    Huang X X, Yu X D, Yan L J, et al. An analysis on tornadoes in Typhoon Ewiniar. Acta Meteor Sinica, 2019, 77(4): 645-661. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904003.htm
    [38]
    Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [39]
    Bai L Q, Meng Z Y, Huang L, et al. An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 Tornado in China produced by the landfalling Typhoon Mujigae(2015). Bull Amer Meteor Soc, 2017, 98(12): 2619-2640.
    [40]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [41]
    Wang T T, Wang N, Yao Y, et al. Comparison analysis of formation mechanisms of two tornado cases under the background of northeast cold vortex. J Meteor Environ, 2017, 33(6): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201706002.htm
    [42]
    Wang N, Wang T T, Zhang S, et al. Observation of a tornado in the circulation background of northeast cold vortex. J Appl Meteor Sci, 2014, 25(4): 463-469. http://qikan.camscma.cn/article/id/20140409
    [43]
    Cai K L, Huang X X, Dai C R, et al. Damage survey and weather radar identification of the tornado on August 9, 2020 in Suihua, Heilongjiang Province. J Trop Meteor, 2021, 37(SupplⅠ): 792-800. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX2021Z1009.htm
    [44]
    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305
    [45]
    Meng X G, Guo J J, Han Y Q. Preliminarily assessment of ERA5 reanalysis data. J Marine Meteor, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htm
    [46]
    Wang X M, Yu X D, Zhu H. The applicability of NCEP reanalysis data to severe convection environment analysis. J Appl Meteor Sci, 2012, 23(2): 139-146. http://qikan.camscma.cn/article/id/20120202
    [47]
    Hodges K I, Lee R W, Bengtsson L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Climate, 2011, 24(18): 4888-4906.
    [48]
    Woodall G R. Qualitative Analysis and Forecasting of Tornado Activity Using Storm-relative Environmental Helicity//16th Conf on Severe Local Storm. American Meteorological Society, 1990: 311-315.
    [49]
    Grams J S, Thompson R L, Snively D V, et al. A climatology and comparison of parameters for significant tornado events in the United States. Wea Forecasting, 2012, 27(1): 106-123.
    [50]
    Wind Science and Engineering Center. A Recommendation for an Enhance Fujita Scale(EF-scale). Wind Science and Engineering Center Rep, Texas Tech University, Lubbock, TX, 2004.
    [51]
    Schultz D M, Richardson Y P, Markowski P M, et al. Tornadoes in the Central United States and the "Clash of Air Masses". Bull Amer Meteor Soc, 2014, 95(11): 1704-1712.
    [52]
    Doswell C A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea Forecasting, 1987, 2(1): 3-16.
    [53]
    Davies J M. Tornadoes in environments with small helicity and/or high LCL heights. Wea Forecasting, 2006, 21(4): 579-594.
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (967) PDF downloads(89) Cited by()
    • Received : 2022-07-27
    • Accepted : 2022-10-24
    • Published : 2023-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint