Chen Lianglü, Xia Yu. The influence of ensemble size on precipitation forecast in a convective scale ensemble forecast system. J Appl Meteor Sci, 2023, 34(2): 142-153. DOI: 10.11898/1001-7313.20230202.
Citation: Chen Lianglü, Xia Yu. The influence of ensemble size on precipitation forecast in a convective scale ensemble forecast system. J Appl Meteor Sci, 2023, 34(2): 142-153. DOI: 10.11898/1001-7313.20230202.

The Influence of Ensemble Size on Precipitation Forecast in a Convective Scale Ensemble Forecast System

More Information
  • In order to provide more powerful support for forecasters in Sichuan and Chongqing with complicated terrain to carry out short-term (0-12 h) precipitation forecast, a convective scale ensemble forecast operational system is designed based on ensemble Kalman filter data assimilation method (31 ensemble samples) and WRF model with 3 km resolution (model domain: 24.5°-34.5°N, 99°-113°E) and lead time of 12 h, which is started by 3 h cycle. It is urgent to decide how many members should be used for the 12 h ensemble forecast to achieve the most representative probability distribution and optimal ensemble forecast skills. An ensemble forecast experiment is carried out on 16 heavy convective scale precipitation cases occurred in Sichuan and Chongqing with different amount of ensemble members, and the results are analyzed comprehensively. It is concluded that the precipitation forecast skills of the ensemble members for different magnitude of precipitation are roughly the same, so there is little difference in the totally averaged prediction skills of different ensemble size. Talagrand distribution becomes better with the increase of ensemble size first. However, when the ensemble size is larger than 17, the improvement by increasing ensemble size is no longer significant. Meanwhile, the forecast error probability becomes smaller with the increase of ensemble size first, but when the ensemble size reaches 16 to 18, the difference between the forecast error probability and the ideal value tends to be stable, indicating that the improvement by further increasing the ensemble size is no longer significant. The relative area of operational characteristic (AROC) score which represents the prediction probability forecast skills, improves gradually with the increase of ensemble size. However, when the ensemble size is large enough, the improvement by lager ensemble size is no longer significant and the AROC scores tend to be stable. The ensemble size required for stable AROC score increases with the magnitude of precipitation. Overall, when the AROC scores become stable, the ensemble size required for light rain, moderate rain, heavy rain, rainstorm (and heavy rainstorm) are 10, 14, 16 and 18, respectively. Based on the comparative analysis results and considering that there is generally little difference in forecasting skills when the number of members is different by 2, in order to achieve the most representative probability distribution and optimal ensemble forecast skills of precipitation, it is recommended to set the ensemble size of convective scale ensemble prediction system from 16 to 18.
  • Fig  1.   Location (the red dot) and influence range (the blue circle) of the assimilated radars in the convective scale ensemble prediction system

    Fig  2.   Performance diagrams of the ensemble members for each 3 h accumulated precipitation forecast

    Fig  3.   Averaged threat scores for each 3 h accumulated precipitation forecast using different ensemble size

    Fig  4.   Talagrand distribution of 0-3 h accumulated precipitation forecast using different ensemble size

    Fig  5.   The same as in Fig. 4, but for 3-6 h accumulated precipitation forecast

    Fig  6.   Forecast error probability for each 3 h accumulated precipitation forecast using different ensemble size

    Fig  7.   AROC scores for each 3 h accumulated precipitation forecast using different ensemble size

  • [1]
    黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用. 应用气象学报, 2022, 33(6): 641-654. DOI: 10.11898/1001-7313.20220601

    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. DOI: 10.11898/1001-7313.20220601
    [2]
    孙健, 曹卓, 李恒, 等. 人工智能技术在数值天气预报中的应用. 应用气象学报, 2021, 32(1): 1-11. DOI: 10.11898/1001-7313.20210101

    Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. DOI: 10.11898/1001-7313.20210101
    [3]
    刘永柱, 张林, 陈炯, 等. CMA-GFS 4DVar边界层过程线性化的改进. 应用气象学报, 2023, 34(1): 15-26. DOI: 10.11898/1001-7313.20230102

    Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. DOI: 10.11898/1001-7313.20230102
    [4]
    李喆, 陈炯, 马占山, 等. CMA-GFS云预报的偏差分布特征. 应用气象学报, 2022, 33(5): 527-540. DOI: 10.11898/1001-7313.20220502

    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. DOI: 10.11898/1001-7313.20220502
    [5]
    Lorenz E N. The predictability of a flow which possesses many scales of motion. Tellus, 1969, 21(3): 289-307. DOI: 10.3402/tellusa.v21i3.10086
    [6]
    Leith C E. Theoretical skill of Monte Carlo forecasts. Mon Wea Rev, 1974, 102(6): 409-418. DOI: 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
    [7]
    Lorenz E N. Atmospheric predictability experiments with a large numerical model. Tellus, 1982, 34(6): 505-513. DOI: 10.3402/tellusa.v34i6.10836
    [8]
    杜钧. 集合预报的现状和前景. 应用气象学报, 2002, 13(1): 16-28. DOI: 10.3969/j.issn.1001-7313.2002.01.002

    Du J. Present situation and prospects of ensemble numerical prediction. J Appl Meteor Sci, 2002, 13(1): 16-28. DOI: 10.3969/j.issn.1001-7313.2002.01.002
    [9]
    Zhu Y J. Ensemble forecast: A new approach to uncertainty and predictability. Adv Atmos Sci, 2005, 22(6): 781-788. DOI: 10.1007/BF02918678
    [10]
    邓国, 龚建东, 邓莲堂, 等. 国家级区域集合预报系统研发和性能检验. 应用气象学报, 2010, 21(5): 513-523. DOI: 10.3969/j.issn.1001-7313.2010.05.001

    Deng G, Gong J D, Deng L T, et al. Development of mesoscale ensemble prediction system at National Meteorological Center. J Appl Meteor Sci, 2010, 21(5): 513-523. DOI: 10.3969/j.issn.1001-7313.2010.05.001
    [11]
    王晨稀, 梁旭东. 热带气旋路径集合预报试验. 应用气象学报, 2007, 18(5): 586-593. DOI: 10.3969/j.issn.1001-7313.2007.05.002

    Wang C X, Liang X D. Ensemble prediction experiments of tropical cyclone track. J Appl Meteor Sci, 2007, 18(5): 586-593. DOI: 10.3969/j.issn.1001-7313.2007.05.002
    [12]
    霍振华, 李晓莉, 陈静, 等. 基于背景场奇异向量的CMA全球集合预报试验. 应用气象学报, 2022, 33(6): 655-667. DOI: 10.11898/1001-7313.20220602

    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. DOI: 10.11898/1001-7313.20220602
    [13]
    Froude L S R, Bengtsson L, Hodges K I. The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Mon Wea Rev, 2007, 135(7): 2545-2567. DOI: 10.1175/MWR3422.1
    [14]
    赵琳娜, 刘莹, 包红军, 等. 基于重组降水集合预报的洪水概率预报. 应用气象学报, 2017, 28(5): 544-554. DOI: 10.11898/1001-7313.20170503

    Zhao L N, Liu Y, Bao H J, et al. The probabilistic flood prediction based on implementation of the Schaake shuffle method over the Huaihe Basin. J Appl Meteor Sci, 2017, 28(5): 544-554. DOI: 10.11898/1001-7313.20170503
    [15]
    Schwartz C S, Romine G S, Sobash R A, et al. NCAR's experimental real-time convection-allowing ensemble prediction system. Wea Forecasting, 2015, 30(6): 1645-1654. DOI: 10.1175/WAF-D-15-0103.1
    [16]
    Buizza R, Houtekamer P L, Pellerin G, et al. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Wea Rev, 2005, 133(5): 1076-1097. DOI: 10.1175/MWR2905.1
    [17]
    于连庆, 李月安, 高嵩, 等. 集合预报产品综合分析显示平台关键技术与实现. 应用气象学报, 2015, 26(3): 369-377. DOI: 10.11898/1001-7313.20150313

    Yu L Q, Li Y A, Gao S, et al. Research and implementation of ensemble forecast product analysis and display platform. J Appl Meteor Sci, 2015, 26(3): 369-377. DOI: 10.11898/1001-7313.20150313
    [18]
    潘留杰, 薛春芳, 张宏芳, 等. 两个集合预报系统对秦岭及周边降水预报性能对比. 应用气象学报, 2016, 27(6): 676-687. DOI: 10.11898/1001-7313.20160604

    Pan L J, Xue C F, Zhang H F, et al. Comparative analysis on precipitation forecasting capabilities of two ensemble prediction systems around Qinling Area. J Appl Meteor Sci, 2016, 27(6): 676-687. DOI: 10.11898/1001-7313.20160604
    [19]
    Du J, Mullen S L, Sanders F. Short-range ensemble forecasting of quantitative precipitation. Mon Wea Rev, 1997, 125(10): 2427-2459.
    [20]
    赵华生, 黄小燕, 黄颖. ECMWF集合预报产品在广西暴雨预报中的释用. 应用气象学报, 2018, 29(3): 344-353. DOI: 10.11898/1001-7313.20180308

    Zhao H S, Huang X Y, Huang Y. Application of ECMWF ensemble forecast products to rainstorm forecast in Guangxi. J Appl Meteor Sci, 2018, 29(3): 344-353. DOI: 10.11898/1001-7313.20180308
    [21]
    董全, 张峰, 宗志平. 基于ECMWF集合预报产品的降水相态客观预报方法. 应用气象学报, 2020, 31(5): 527-542. DOI: 10.11898/1001-7313.20200502

    Dong Q, Zhang F, Zong Z P. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. DOI: 10.11898/1001-7313.20200502
    [22]
    马旭林, 薛纪善, 陆维松. GRAPES全球集合预报的集合卡尔曼变换初始扰动方案初步研究. 气象学报, 2008, 66(4): 526-536. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200804005.htm

    Ma X L, Xue J S, Lu W S. Preliminary study on ensemble transform Kalman filterbased initial perturbation scheme in GRAPES global ensemble prediction. Acta Meteor Sinica, 2008, 66(4): 526-536. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200804005.htm
    [23]
    Toth Z, Kalnay E. Ensemble forecasting at NMC: The genera tion of perturbations. Bull Amer Meteor Soc, 1993, 74: 2317-2330.
    [24]
    Toth Z, Kalnay E. Ensemble forecasting at NCEP and the breeding method. Mon Wea Rev, 1997, 125: 3297-3319.
    [25]
    陈静, 薛纪善, 颜宏. 华南中尺度暴雨数值预报的不确定性与集合预报试验. 气象学报, 2003, 61(4): 432-446. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200304004.htm

    Chen J, Xue J S, Yan H. The uncertainty of mesoscale numerical prediction of South China heavy rain and the ensemble simulations. Acta Meteor Sinica, 2003, 61(4): 432-446. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200304004.htm
    [26]
    陈静, 薛纪善, 颜宏. 一种新型的中尺度暴雨集合预报初值扰动方法研究. 大气科学, 2005, 29(5): 717-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200505004.htm

    Chen J, Xue J S, Yan H. A new initial perturbation m ethod of ensemble mesoscale heavy rain prediction. Chinese J Atmos Sci, 2005, 29(5): 717-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200505004.htm
    [27]
    袁月, 李晓莉, 陈静, 等. GRAPES区域集合预报系统模式不确定性的随机扰动技术研究. 气象, 2016, 42(10): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201610001.htm

    Yuan Y, Li X L, Chen J, et al. Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteor Mon, 2016, 42(10): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201610001.htm
    [28]
    张涵斌, 智协飞, 陈静, 等. 区域集合预报扰动方法研究进展综述. 大气科学学报, 2017, 40(2): 145-157. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201702001.htm

    Zhang H B, Zhi X F, Chen J, et al. Achievement of perturbation methods for regional ensemble forecast. Trans Atmos Sci, 2017, 40(2): 145-157. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201702001.htm
    [29]
    Peralta C, Bouallègue Z B, Theis S E, et al. Accounting for initial condition uncertainties in COSMO-DE-EPS. J Geophys Res, 2012, 117(D7): 134-142.
    [30]
    Golding B, Roberts N, Leoncini G, et al. MOGREPS-UK convective-permitting ensemble products for surface water flood forecasting: Rationale and first results. J Hydrometeorol, 2015, 17(5): 1383-1406.
    [31]
    Nuissier O, Marsigli C, Vincendon B, et al. Evaluation of two convective-permitting ensemble system in the HyMeX Specila Observation Period(SOP1) framework. Quart J Roy Meteor Soc, 2016, 142(Suppl Ⅰ): 404-418.
    [32]
    Kim S H, Kim H M. Effect of considering sub-grid scale uncertainties on the forecasts of a high-resolution limited area ensemble prediction system. Pure and Applied Geophysics, 2017, 174(5): 2021-2037.
    [33]
    Kiktev D, Joe P, Isaac G A, et al. FROST-2014: The Sochi Winter Olympics international project. Bull Amer Meteor Soc, 2017, 98(9): 1908-1929.
    [34]
    Chen L L, Liu C S, Xue M, et al. Use of power transform mixing ratios as hydrometeor control variables for direct assimilation of radar reflectivity in GSI En3DVar and tests with five convective storm cases. Mon Wea Rev, 2021, 149(3): 645-659.
    [35]
    Chen L L, Liu C S, Jung Y, et al. Object-based verification of GSI EnKF and hybrid En3DVar radar data assimilation and convection-allowing forecasts within a warn-on-forecast framework. Wea Forecasting, 2022, 37(5): 639-658.
    [36]
    Liu C S, Li H Q, Xue M, et al. Use of a reflectivity operator based on double-moment thompson microphysics for direct assimilation of radar reflectivity in GSI-based hybrid En3DVar. Mon Wea Rev, 2022, 150(4): 907-926.
    [37]
    Richardson D S. Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart J Roy Meteor Soc, 2001, 127(577): 2473-2489.
    [38]
    Clark A J, Gallus Jr W A, Xue M, et al. A comparison of precipitation forecast skill between small convection-permitting and large convection-parameterizing ensembles. Wea Forecasting, 2009, 24(4): 1121-1140.
    [39]
    Clark A J, Gallus Jr W A, Xue M, et al. Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather. Wea Forecasting, 2010, 25(4): 1052-1081.
    [40]
    高峰, 闵锦忠, 孔凡铀, 等. 风暴尺度集合成员数对预报技巧的影响. 南京气象学院学报, 2009, 32(2): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200902008.htm

    Gao F, Min J Z, Kong F Y, et al. The impact of ensemble size on storm-scale ensemble forecasting skills. Journal of Nanjing Institute of Meteorology, 2009, 32(2): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200902008.htm
    [41]
    Clark A J, Kain J S, Stensrud D J, et al. Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon Wea Rev, 2011, 139(4): 1410-1418.
    [42]
    陈良吕, 吴钲, 高松. 重庆中尺度集合预报系统预报性能分析. 高原山地气象研究, 2017, 37(4): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201704004.htm

    Chen L L, Wu Z, Gao S. Prediction performance analysis of Chongqing mesoscale ensemble prediction system. Plateau and Mountain Meteorology Research, 2017, 37(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201704004.htm
    [43]
    潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验. 气象学报, 2018, 76(5): 755-766. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201805008.htm

    Pan Y, Gu J X, Yu J J, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor Sinica, 2018, 76(5): 755-766. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201805008.htm
    [44]
    Clark A J, Gallus Jr W A, Weisman M L. Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Wea Forecasting, 2010, 25(5): 1495-1509.
    [45]
    陈良吕, 夏宇, 陈法敬. TIGGE技术对西南地区地面要素预报性能的分析. 暴雨灾害, 2019, 38(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201904009.htm

    Chen L L, Xia Y, Chen F J. Performance analysis of surface element forecast of TIGGE ensemble forecast in southwest China. Torrential Rain and Disasters, 2019, 38(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201904009.htm
  • Cited by

    Periodical cited type(4)

    1. 彭玮莹,黎跃勇,谭诗琪,李好,官建文,廖春花,周威,谢睿恒. 基于降水因子的湖南省财货险理赔风险指数模型. 应用气象学报. 2025(01): 14-23 . 本站查看
    2. 叶茂,陈良吕,王婧卓. 水平分辨率对CMA-REPS集合预报技巧的影响. 气象. 2025(02): 153-166 .
    3. 张涵斌,夏宇,曹亚杰. 基于扰动观测的EDA方法在CMA集合预报中的应用. 应用气象学报. 2025(02): 129-141 . 本站查看
    4. 陈良吕,夏宇. 川渝地区一次短时强降水天气的集合敏感性分析. 气象. 2024(04): 407-419 .

    Other cited types(1)

Catalog

    Figures(7)

    Article views1241 PDF downloads93 Cited by: 5
    • Received : 2022-09-04
    • Accepted : 2023-02-09
    • Published : 2023-03-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return