Citation: | Chen Lianglü, Xia Yu. The influence of ensemble size on precipitation forecast in a convective scale ensemble forecast system. J Appl Meteor Sci, 2023, 34(2): 142-153. DOI: 10.11898/1001-7313.20230202. |
Fig. 5 The same as in Fig. 4, but for 3-6 h accumulated precipitation forecast
[1] |
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[2] |
Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[3] |
Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102
|
[4] |
Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502
|
[5] |
Lorenz E N. The predictability of a flow which possesses many scales of motion. Tellus, 1969, 21(3): 289-307. doi: 10.3402/tellusa.v21i3.10086
|
[6] |
Leith C E. Theoretical skill of Monte Carlo forecasts. Mon Wea Rev, 1974, 102(6): 409-418. doi: 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
|
[7] |
Lorenz E N. Atmospheric predictability experiments with a large numerical model. Tellus, 1982, 34(6): 505-513. doi: 10.3402/tellusa.v34i6.10836
|
[8] |
Du J. Present situation and prospects of ensemble numerical prediction. J Appl Meteor Sci, 2002, 13(1): 16-28. doi: 10.3969/j.issn.1001-7313.2002.01.002
|
[9] |
Zhu Y J. Ensemble forecast: A new approach to uncertainty and predictability. Adv Atmos Sci, 2005, 22(6): 781-788. doi: 10.1007/BF02918678
|
[10] |
Deng G, Gong J D, Deng L T, et al. Development of mesoscale ensemble prediction system at National Meteorological Center. J Appl Meteor Sci, 2010, 21(5): 513-523. doi: 10.3969/j.issn.1001-7313.2010.05.001
|
[11] |
Wang C X, Liang X D. Ensemble prediction experiments of tropical cyclone track. J Appl Meteor Sci, 2007, 18(5): 586-593. doi: 10.3969/j.issn.1001-7313.2007.05.002
|
[12] |
Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602
|
[13] |
Froude L S R, Bengtsson L, Hodges K I. The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Mon Wea Rev, 2007, 135(7): 2545-2567. doi: 10.1175/MWR3422.1
|
[14] |
Zhao L N, Liu Y, Bao H J, et al. The probabilistic flood prediction based on implementation of the Schaake shuffle method over the Huaihe Basin. J Appl Meteor Sci, 2017, 28(5): 544-554. doi: 10.11898/1001-7313.20170503
|
[15] |
Schwartz C S, Romine G S, Sobash R A, et al. NCAR's experimental real-time convection-allowing ensemble prediction system. Wea Forecasting, 2015, 30(6): 1645-1654. doi: 10.1175/WAF-D-15-0103.1
|
[16] |
Buizza R, Houtekamer P L, Pellerin G, et al. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Wea Rev, 2005, 133(5): 1076-1097. doi: 10.1175/MWR2905.1
|
[17] |
Yu L Q, Li Y A, Gao S, et al. Research and implementation of ensemble forecast product analysis and display platform. J Appl Meteor Sci, 2015, 26(3): 369-377. doi: 10.11898/1001-7313.20150313
|
[18] |
Pan L J, Xue C F, Zhang H F, et al. Comparative analysis on precipitation forecasting capabilities of two ensemble prediction systems around Qinling Area. J Appl Meteor Sci, 2016, 27(6): 676-687. doi: 10.11898/1001-7313.20160604
|
[19] |
Du J, Mullen S L, Sanders F. Short-range ensemble forecasting of quantitative precipitation. Mon Wea Rev, 1997, 125(10): 2427-2459.
|
[20] |
Zhao H S, Huang X Y, Huang Y. Application of ECMWF ensemble forecast products to rainstorm forecast in Guangxi. J Appl Meteor Sci, 2018, 29(3): 344-353. doi: 10.11898/1001-7313.20180308
|
[21] |
Dong Q, Zhang F, Zong Z P. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. doi: 10.11898/1001-7313.20200502
|
[22] |
Ma X L, Xue J S, Lu W S. Preliminary study on ensemble transform Kalman filterbased initial perturbation scheme in GRAPES global ensemble prediction. Acta Meteor Sinica, 2008, 66(4): 526-536. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200804005.htm
|
[23] |
Toth Z, Kalnay E. Ensemble forecasting at NMC: The genera tion of perturbations. Bull Amer Meteor Soc, 1993, 74: 2317-2330.
|
[24] |
Toth Z, Kalnay E. Ensemble forecasting at NCEP and the breeding method. Mon Wea Rev, 1997, 125: 3297-3319.
|
[25] |
Chen J, Xue J S, Yan H. The uncertainty of mesoscale numerical prediction of South China heavy rain and the ensemble simulations. Acta Meteor Sinica, 2003, 61(4): 432-446. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200304004.htm
|
[26] |
Chen J, Xue J S, Yan H. A new initial perturbation m ethod of ensemble mesoscale heavy rain prediction. Chinese J Atmos Sci, 2005, 29(5): 717-726. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200505004.htm
|
[27] |
Yuan Y, Li X L, Chen J, et al. Stochastic parameterization toward model uncertainty for the GRAPES mesoscale ensemble prediction system. Meteor Mon, 2016, 42(10): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201610001.htm
|
[28] |
Zhang H B, Zhi X F, Chen J, et al. Achievement of perturbation methods for regional ensemble forecast. Trans Atmos Sci, 2017, 40(2): 145-157. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201702001.htm
|
[29] |
Peralta C, Bouallègue Z B, Theis S E, et al. Accounting for initial condition uncertainties in COSMO-DE-EPS. J Geophys Res, 2012, 117(D7): 134-142.
|
[30] |
Golding B, Roberts N, Leoncini G, et al. MOGREPS-UK convective-permitting ensemble products for surface water flood forecasting: Rationale and first results. J Hydrometeorol, 2015, 17(5): 1383-1406.
|
[31] |
Nuissier O, Marsigli C, Vincendon B, et al. Evaluation of two convective-permitting ensemble system in the HyMeX Specila Observation Period(SOP1) framework. Quart J Roy Meteor Soc, 2016, 142(Suppl Ⅰ): 404-418.
|
[32] |
Kim S H, Kim H M. Effect of considering sub-grid scale uncertainties on the forecasts of a high-resolution limited area ensemble prediction system. Pure and Applied Geophysics, 2017, 174(5): 2021-2037.
|
[33] |
Kiktev D, Joe P, Isaac G A, et al. FROST-2014: The Sochi Winter Olympics international project. Bull Amer Meteor Soc, 2017, 98(9): 1908-1929.
|
[34] |
Chen L L, Liu C S, Xue M, et al. Use of power transform mixing ratios as hydrometeor control variables for direct assimilation of radar reflectivity in GSI En3DVar and tests with five convective storm cases. Mon Wea Rev, 2021, 149(3): 645-659.
|
[35] |
Chen L L, Liu C S, Jung Y, et al. Object-based verification of GSI EnKF and hybrid En3DVar radar data assimilation and convection-allowing forecasts within a warn-on-forecast framework. Wea Forecasting, 2022, 37(5): 639-658.
|
[36] |
Liu C S, Li H Q, Xue M, et al. Use of a reflectivity operator based on double-moment thompson microphysics for direct assimilation of radar reflectivity in GSI-based hybrid En3DVar. Mon Wea Rev, 2022, 150(4): 907-926.
|
[37] |
Richardson D S. Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart J Roy Meteor Soc, 2001, 127(577): 2473-2489.
|
[38] |
Clark A J, Gallus Jr W A, Xue M, et al. A comparison of precipitation forecast skill between small convection-permitting and large convection-parameterizing ensembles. Wea Forecasting, 2009, 24(4): 1121-1140.
|
[39] |
Clark A J, Gallus Jr W A, Xue M, et al. Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather. Wea Forecasting, 2010, 25(4): 1052-1081.
|
[40] |
Gao F, Min J Z, Kong F Y, et al. The impact of ensemble size on storm-scale ensemble forecasting skills. Journal of Nanjing Institute of Meteorology, 2009, 32(2): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200902008.htm
|
[41] |
Clark A J, Kain J S, Stensrud D J, et al. Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon Wea Rev, 2011, 139(4): 1410-1418.
|
[42] |
Chen L L, Wu Z, Gao S. Prediction performance analysis of Chongqing mesoscale ensemble prediction system. Plateau and Mountain Meteorology Research, 2017, 37(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201704004.htm
|
[43] |
Pan Y, Gu J X, Yu J J, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor Sinica, 2018, 76(5): 755-766. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201805008.htm
|
[44] |
Clark A J, Gallus Jr W A, Weisman M L. Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Wea Forecasting, 2010, 25(5): 1495-1509.
|
[45] |
Chen L L, Xia Y, Chen F J. Performance analysis of surface element forecast of TIGGE ensemble forecast in southwest China. Torrential Rain and Disasters, 2019, 38(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201904009.htm
|