Citation: | Lin Jialu, Li Ying, Liu Longsheng. A heavy precipitation process over the Tibetan Plateau under the joint effects of a tropical cyclone and vortex. J Appl Meteor Sci, 2023, 34(2): 166-178. DOI: 10.11898/1001-7313.20230204. |
Fig. 9 Vertical profiles of apparent heat source Q1 and apparent moist sink Q2 and their contribution terms in the main area of plateau precipitation
(the green line denotes Q1 and Q2, the red line denotes vertical movement term, the yellow line denotes advection term, the blue line denotes local term)
[1] |
Ye D Z. Tibetan Plateau Meteorology. Beijing: Science Press, 1979.
|
[2] |
Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607
|
[3] |
Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi: 10.11898/1001-7313.20210505
|
[4] |
Lhasa Group for Tibetan Plateau Meteorology Research. Research of 500 hPa Shear Lines over the Tibetan Plateau in Summer. Beijing: Science Press, 1981.
|
[5] |
Xiang S Y, Li Y Q. Progress in plateau low vortex and applications of TRMM satellite. Plateau Mountain Meteor Res, 2011, 31(1): 74-78. doi: 10.3969/j.issn.1674-2184·2011.01.014
|
[6] |
Ren S L, Fang X, Lu N M, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Appl Meteor Sci, 2019, 30(3): 345-359. doi: 10.11898/1001-7313.20190308
|
[7] |
Li L, Zhang R, Wen M. Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices. Meteor Atmos Phys, 2014, 125(3/4): 135-144.
|
[8] |
Li L, Zhang R, Wen M. Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008. Adv Atmos Sci, 2011, 28(4): 797-808. doi: 10.1007/s00376-010-0027-y
|
[9] |
Zhao P, Yuan Y. Characteristics of a plateau vortex precipitation event on 14 July 2014. J Appl Meteor Sci, 2017, 28(5): 532-543. doi: 10.11898/1001-7313.20170502
|
[10] |
Huang X Y, Li X H. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. doi: 10.11898/1001-7313.20220209
|
[11] |
Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406
|
[12] |
Li Y, Guo R F, Suo M Q, et al. Elementary study on the northward movement of convective cloud cluster over the Bay of Bengal to the low latitude Plateau during early summer. J Trop Meteor, 2003, 19(3): 277-284. doi: 10.3969/j.issn.1004-4965.2003.03.007
|
[13] |
Li Y, Zhang T F, Suo M Q. Analysis on Yunnan severe precipitation aroused by convective cloud clusters over the Bay of Bengal during early summer. Scientia Meteor Sinica, 2003, 23(2): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200302007.htm
|
[14] |
Xu M L, Zhang X N, Yang S Y. Ambient fields and satellite pictures characteristic analysis for storms over the Bay of Bengal affecting low-latitude Plateau. J Trop Meteor, 2007, 23(4): 395-400. doi: 10.3969/j.issn.1004-4965.2007.04.011
|
[15] |
Zhang T F, Duan X, Zhang J. Mesoscale analysis of Yunnan successive heavy precipitation caused by storms over the Bay of Bengal in early summer. J Trop Meteor, 2006, 22(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200601009.htm
|
[16] |
Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210
|
[17] |
Wang Y H, Wang S X. A preliminary study of tropical cyclones over the Bay of Bengal. Meteor Mon, 1988, 14(6): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198806004.htm
|
[18] |
Wang Y H, Wang S X. Tropical storms in the North Indian Ocean and the relationship with precipitation in Tibet. Meteor Mon, 1989, 15(11): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198911008.htm
|
[19] |
Lü A M. Influence of Cyclonic Storm Activity in the Bay of Bengal on Precipitation in China. Beijing: Chinese Academy of Meteorological Sciences, 2013.
|
[20] |
Yang Z F, Li Y A, Li W H. Contrastive analysis of different effects of two storms in the Bay of Bengal on precipitation in China. Marin Forec, 2000, 17(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB200004006.htm
|
[21] |
Wang Z Q, Zhu W J, Duan A M. A case study of snowstorm in Tibetan Plateau induced by Bay of Bengal storm: Based on the theory of slantwise vorticity development. Plateau Meteor, 2010, 29(3): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201003020.htm
|
[22] |
Suo M Q, Ding Y H. A case study on the effect of southern branch trough in the subtropical westerlies combined with the storm over the Bay of Bengal on plateau snowstorm. Meteor Mon, 2014, 40(9): 1033-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201409001.htm
|
[23] |
Duan X, Duan W. Impact of Bay of Bengal storms on precipitation over plateau area. Plateau Meteor, 2015, 34(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501001.htm
|
[24] |
Liu B, Li Y. Southwesterly water vapor transport induced by tropical cyclones over the Bay of Bengal during the South Asian Monsoon transition period. J Meteor Res Appl, 2022, 36(1): 140-153.
|
[25] |
Draxler R P, Hess G D. An overview of the HYSPLIT-4 modeling system for trajectories, dispersion, and deposition. Aust Meteor Mag, 1998, 47: 295-308.
|
[26] |
Wu G X, Cai Y P, Tang X J. Moist potential vorticity and slantwise vorticity development. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm
|
[27] |
Gao S Y, Zhao T T, Song L L, et al. Comparison of development mechanisms of two cyclones affecting Northeast China. J Appl Meteor Sci, 2020, 31(5): 556-569. doi: 10.11898/1001-7313.20200504
|
[28] |
Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302
|
[29] |
Li Y Q, Yu S H, Peng J, et al, Yearbook of Tibet Plateau Vortex and Shear Line in Qinghai-Xizang Plateau 2017. Beijing: Science Press, 2019.
|
[30] |
Chen S H, Lin Y L. Effects of moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J Atmos Sci, 2005, 62: 331-350.
|
[31] |
Smolarkiewicz P K, Rotunno R. Low Froude number flow past three-dimensional obstacles. Part Ⅰ: Baroclinically generated lee vortices. J Atmos Sci, 1989, 46: 1154-1164.
|