损失函数 | 评估指标 | |||
相对误差绝对值/% | 均方根误差/K | 结构相似性 | 峰值信噪比 | |
均方误差 | 157.80 | 10.48 | 0.69 | 20.50 |
平均误差绝对值 | 155.75 | 10.11 | 0.74 | 20.87 |
结构相似性 | 158.43 | 10.36 | 0.74 | 20.63 |
结构相似性结合平均误差绝对值 | 151.64 | 10.00 | 0.75 | 20.92 |
Citation: | Xiao Haixia, Zhang Feng, Wang Yaqiang, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233. DOI: 10.11898/1001-7313.20230208. |
Fig. 5 The same as in Fig. 3, but from 0300 UTC to 0700 UTC on 15 Jun 2020
Fig. 6 The same as in Fig. 4, but from 0800 UTC to 1000 UTC on 15 Jun 2020
Fig. 7 The same as in Fig. 3, but from 1000 UTC to 1400 UTC on 13 Jun 2020
Fig. 8 The same as in Fig. 4, but from 1500 UTC to 1700 UTC on 13 Jun 2020
Table 1 Performance of the cloud image extrapolation model trained with different loss functions in the generator
损失函数 | 评估指标 | |||
相对误差绝对值/% | 均方根误差/K | 结构相似性 | 峰值信噪比 | |
均方误差 | 157.80 | 10.48 | 0.69 | 20.50 |
平均误差绝对值 | 155.75 | 10.11 | 0.74 | 20.87 |
结构相似性 | 158.43 | 10.36 | 0.74 | 20.63 |
结构相似性结合平均误差绝对值 | 151.64 | 10.00 | 0.75 | 20.92 |
Table 2 Predictive performance of the generative adversarial network model for the cloud images at different lead times using different loss functions
损失函数 | 评估指标 | ||||||
结构相似性 | 峰值信噪比 | ||||||
1 h | 2 h | 3 h | 1 h | 2 h | 3 h | ||
平均误差绝对值 | 0.79 | 0.74 | 0.71 | 23.25 | 20.44 | 18.92 | |
均方误差 | 0.75 | 0.69 | 0.61 | 22.99 | 19.53 | 18.98 | |
结构相似性 | 0.79 | 0.74 | 0.71 | 22.92 | 20.17 | 18.82 | |
结构相似性结合平均误差绝对值 | 0.80 | 0.75 | 0.72 | 23.21 | 20.51 | 19.03 |
Table 3 Prediction performance of different models based on testing set
模型 | 评估指标 | |||
相对误差绝对值% | 均方根误差/K | 结构相似性 | 峰值信噪比 | |
生成对抗网络 | 151.64 | 10.00 | 0.75 | 20.92 |
轨迹门控循环单元模型 | 172.84 | 11.10 | 0.72 | 19.99 |
光流法 | 186.35 | 11.97 | 0.66 | 19.22 |
[1] |
Zhang C, Liu J, Li X G, et al. A cloud classification method based on information fusion of visible and infrared images. J Meteor Environ, 2018, 34(1): 82-90. doi: 10.3969/j.issn.1673-503X.2018.01.010
|
[2] |
Wu X J, Zhu X X, Mao Z Y, et al. Algorithm design of convective precipitation monitoring and early warning service using FY-2 infrared data. Journal of Marine Meteorology, 2019, 39(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201903001.htm
|
[3] |
Rojas Y, Minder J R, Campbell L S, et al. Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile-ScienceDirect. Atmos Res, 2021, 253: 105454. doi: 10.1016/j.atmosres.2021.105454
|
[4] |
Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408
|
[5] |
Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104
|
[6] |
Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi: 10.11898/1001-7313.20210302
|
[7] |
Zhang Z S, Liu M, Hu C Y, et al. Prediction of typhoon grade with time series typhoon satellite images based on Seq2Seq and Attention. Remote Sensing Information, 2020, 35(4): 16-22. doi: 10.3969/j.issn.1000-3177.2020.04.003
|
[8] |
Zou G L, Hou Q, Zheng Z S, et al. Classification of typhoon grade based on satellite cloud image and deep learning. Remote Sensing Information, 2019, 34(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201903001.htm
|
[9] |
Ren S L, Fang X, Lu N M, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Trop Meteor, 2019, 30(3): 345-359. doi: 10.11898/1001-7313.20190308
|
[10] |
Wang Y F, Qi Y B, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi: 10.11898/1001-7313.20220405
|
[11] |
Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308
|
[12] |
Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605
|
[13] |
Wang L, Zhou Y Q, Cai M, et al. Study on correlation between cloud characteristic parameters and precipitation in North China. Meteor Environ Sci, 2019, 42(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201903002.htm
|
[14] |
Wang S H, Han Z G, Yao Z G, et al. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data. Plateau Meteor, 2011, 30(1): 38-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201101006.htm
|
[15] |
Genkova I S, Pachedjieva B, Ganev G, et al. Cloud motion estimation from METEOSAT images using time mutability method. International Society for Optics and Photonics, 1999, 3571: 297-301.
|
[16] |
Chen M X, Wang Y C, Yu X D. Improvement and application test of TREC algorithm for convective storm nowcast. J Trop Meteor, 2007, 18(5): 690-701. http://qikan.camscma.cn/article/id/200705105
|
[17] |
Zhang L J, Cheng M H, Tian F Y. Application of artificial neural networks and support vector machine in rainfall forecasting. Plateau Meteor, 2010, 29(4): 982-991. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201004018.htm
|
[18] |
Liu K F, Zhang R, Sun Z B. A cloud movement short-time forecast based on crosscorrelation. J Image Graph, 2006, 11(4): 586-591. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200604023.htm
|
[19] |
Vukicevic T, Greenwald T, Zupanski M, et al. Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon Wea Rev, 2004, 132(12): 3066-3077.
|
[20] |
Das S K, Chanda B, Mukherjee D P. Prediction of Cloud for Weather Now-casting Application Using Topology Adaptive Active Membrane//International Conference on Pattern Recognition and Machine Intelligence. Springer, 2009: 303-308.
|
[21] |
Goswami B, Bhandari G. Automatically Adjusting Cloud Movement Prediction Model from Satellite Infrared Images//2011 Annual IEEE India Conference, 2012: 1-4.
|
[22] |
Liu Y A, Wei M, Gao W, et al. Short-term automatic forecast algorithm of severe convective cloud identification using FY-2 IR images. J Remote Sens, 2012, 16(1): 79-92. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201201007.htm
|
[23] |
Morf H. Sunshine and cloud cover prediction based on Markov processes. Sol Energy, 2014, 110: 615-626.
|
[24] |
Liang L W, Yang X H, Yin J, et al. The new short-term cloud forecast method. Plateau Meteor, 2015, 34(4): 1186-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504030.htm
|
[25] |
Sakaino H. Spatio-temporal image pattern prediction method based on a physical model with time-varying optical flow. IEEE Trans Geosci Remote Sens, 2013, 51(5): 3023-3036.
|
[26] |
Chow C W, Belongie S, Kleissl J. Cloud motion and stability estimation for intra-hour solar forecasting. Sol Energy, 2015, 115: 645-655.
|
[27] |
Tian L, Li X, Ye Y, et al. A generative adversarial gated recurrent unit model for precipitation nowcasting. IEEE Geoscience and Remote Sensing Letters, 2019, 17(4): 601-605.
|
[28] |
Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502
|
[29] |
Yuan K, Li W J, Li M, et al. Examination and avaluation of four machine deep learning algorithms for radar echo nowcasting in Wuhan Region. Meteor Mon, 2022, 48(4): 428-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202204004.htm
|
[30] |
Shi X, Gao Z, Lausen L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model. Computer Science-Computer Vision and Pattern Recognition, 2017, arXiv. 1706.03458.
|
[31] |
Pham T Q D, Hoang T V, Van Tran X, et al. Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning. J Intell Manuf, 2022: 1-19. DOI: 10.1007/s10845-021-01896-8.
|
[32] |
Wei J, Huang W, Li Z Q, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens Environ, 2019, 231: 111221.
|
[33] |
Kristiani E, Lin H, Lin J R, et al. Short-term prediction of PM2.5 using LSTM deep learning methods. Sustainability, 2022, 14(4): 2068.
|
[34] |
Zhang J, Liu P, Zhang F, et al. CloudNet: Ground-based cloud classification with deep convolutional neural network. Geophys Res Lett, 2018, 45(16): 8665-8672.
|
[35] |
Hensel S, Rinov M B, Koch M, et al. Evaluation of deep learning-based neural network methods for cloud detection and segmentation. Energies, 2021, 14(19): 6156.
|
[36] |
He R, Guan Z Y, Jin L. A short-term cloud forecast model by neural networks. Trans Atmos Sci, 2010, 33(6): 725-730. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201006010.htm
|
[37] |
Tan C, Feng X, Long J, et al. FORECAST-CLSTM: A New Convolutional LSTM Network for Cloudage Nowcasting. 2018 IEEE Visual Communications and Image Processing(VCIP), 2018.
|
[38] |
Su X, Li T, An C, et al. Prediction of short-time cloud motion using a deep-learning model. Atmosphere, 2020, 11(11): 1151.
|
[39] |
Lee J H, Lee S S, Kim H G, et al. MSCIP Net: Multichannel satellite image prediction via deep neural network. IEEE Trans Geosci Remote Sens, 2019, 58(3): 2212-2224.
|
[40] |
Tao R Z. Cloud Detection and Precipitation Extrapolation Forecast in Tibet Based on Fengyun-4 Satellite Images. Nanjing: Nanjing University of Information Science & Technology, 2021.
|
[41] |
Qu J H, Zhang L, Lu Q F, et al. Characterization of bias in FY-4A advanced geostationary radiation imager observations from ERA5 background simulations using RTTOV. Acta Meteor Sinica, 2019, 77(5): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905009.htm
|
[42] |
Tang F, Zhuge X, Zeng M, et al. Applications of the advanced radiative transfer modeling system(ARMS) to characterize the performance of Fengyun-4A/AGRI. Remote Sens, 2021, 13(16): 3120.
|
[43] |
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[44] |
Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101
|
[45] |
Chen Y Z, Lin L X, Wang R, et al. A study on the artificial intelligence nowcasting based on generative adversarial networks. Trans Atmos Sci, 2019, 42(2): 311-320. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201902014.htm
|
[46] |
Shi X, Chen Z, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Computer Science-Computer Vision and Pattern Recognition, 2015, 28: 802-810.
|
[47] |
Jing J, Li Q, Peng X. MLC-LSTM: Exploiting the spatiotemporal correlation between multi-level weather radar echoes for echo sequence extrapolation. Sensors, 2019, 19(18): 3988.
|
[48] |
Kingma D P, Ba J. Adam: A method for stochastic optimization. Computer Science-Machine Learning, 2014, arXiv: 1412.6980.
|
[49] |
Ruder S. An overview of gradient descent optimization. Comput Sci-Machine Learning, 2016, arXiv: 1609.04747.
|
[50] |
Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process, 2004, 13: 600-612.
|
[51] |
Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging, 2016, 3(1): 47-57.
|
[52] |
Ayzel G, Heistermann M, Winterrath T. Optical flow models as an open benchmark for radar-based precipitation nowcasting(rainymotion v0.1). Geosci Model Dev, 2019, 12(4): 1387-1402.
|