组合反射率因子/dBZ | 样本量 |
40.0~44.9 | 63 |
45.0~49.9 | 158 |
50.0~54.9 | 188 |
55.0~59.9 | 158 |
≥60.0 | 63 |
Citation: | Yuan Kai, Li Wujie, Pang Jing. Hail identification technology in Eastern Hubei based on decision tree algorithm. J Appl Meteor Sci, 2023, 34(2): 234-245. DOI: 10.11898/1001-7313.20230209. |
Table 1 Selection standard and corresponding quantity of non-hail samples
组合反射率因子/dBZ | 样本量 |
40.0~44.9 | 63 |
45.0~49.9 | 158 |
50.0~54.9 | 188 |
55.0~59.9 | 158 |
≥60.0 | 63 |
Table 2 Scores of different decision trees
决策树算法 | 命中率 | 虚警率 | 临界成功指数 |
强度决策树 | 0.88 | 0.12 | 0.80 |
强度-高度决策树 | 0.93 | 0.07 | 0.86 |
[1] |
Zheng Y G, Zhou K H, Sheng J, et al. Advance in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. doi: 10.11898/1001-7313.20150601
|
[2] |
Xu S Z, Wei H H. Some thoughts on the weather forecast of severe convective storms. Torrential Rain Disaste, 2016, 35(3): 197-202. doi: 10.3969/j.issn.1004-9045.2016.03.001
|
[3] |
Shi W Z, Jin Q, Guo S, et al. An analysis and forecast for the area of an hail weather in Hubei Province. J Trop Meteor, 2004, 20(2): 212-217. doi: 10.3969/j.issn.1004-4965.2004.02.014
|
[4] |
Yu X D, Wang Y C, Chen M X, et al. Severe convective weather warnings and its improvement with the introduction of the NEXRAD. Plateau Meteor, 2005, 24(3): 456-464. doi: 10.3321/j.issn:1000-0534.2005.03.025
|
[5] |
Diao X G, Zhu J J, Huang X S, et al. Application of VIL and VIL density in warning criteria for hailstorm. Plateau Meteor, 2008, 27(5): 1131-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200805023.htm
|
[6] |
Hu S, Luo C, Zhang Y, et al. Dopper radar features of severe hailstorm in Guangdong Province. J Appl Meteor Sci, 2015, 26(1): 57-65. doi: 10.11898/1001-7313.20150106
|
[7] |
Wang P, Pan Y. Severe hail identification model based on saliency characteristics. Acta Physica Sinica, 2013, 62(6): 515-524. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201306077.htm
|
[8] |
Wang S, Sha Y, Song J M, et al. Characteristic analysis of hail cloud Doppler radar parameters in the eastern Hebei Province. Meteor Mon, 2019, 45(5): 713-722.
|
[9] |
Wu J K, Chen M X, Qin R, et al. The veriatiobal echo tracking method and its application in convective storm nowcasting. Acta Meteor Sinica, 2019, 77(6): 999-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906003.htm
|
[10] |
Wang H, Wu N G, Wan Q L, et al. Analysis of S-band polarimetric radar observations of a hail-producing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906003.htm
|
[11] |
Feng J Q, Zhang S S, Wu C F, et al. Appliation of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574. doi: 10.7519/j.issn.10000526.2018.12.006
|
[12] |
Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403
|
[13] |
Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[14] |
Yu X D, Zheng Y G. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica, 2020, 78(3): 391-418. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003006.htm
|
[15] |
Wang T B, Zhou K H, Zheng Y G. Statistic analysis of thunderstorm characteristics in central and eastern China. Meteor Mon, 2020, 46(2): 189-199.
|
[16] |
Zhou K H, Zheng Y G, Han L, et al. Advances in application of machine learning to severe weather monitoring and forecasting. Meteor Mon, 2021, 47(3): 274-289. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103002.htm
|
[17] |
Wang J, Liu L P. The evaluation of WRS-88D hail detection algorithm over Guizhou Region. J Appl Meteor Sci, 2011, 22(1): 96-106. http://qikan.camscma.cn/article/id/20110110
|
[18] |
Zhou K H. Convective Weather Forecasting with Convolutional Neural Networks. Beijing: University of Chinese Academy of Sciences, 2021.
|
[19] |
Liu X W, Jiang Y S, Huang W B, et al. Classified identification and nowcast of hail weather based on radar products and random forest algorithm. Plateau Meteor, 2021, 40(4): 898-908. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202104016.htm
|
[20] |
Wang P, Gao Y, Li C. Method study of classification and recognition of thunderstorm system less than 50 km. Meteor Mon, 2016, 42(2): 230-237. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201602011.htm
|
[21] |
Fang D X, Li H B, Dong X N, et al. Application of storm auto-classification technology in artificial hail prevention. Meteor Mon, 2016, 42(9): 1124-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201609010.htm
|
[22] |
Zheng J Q, Lu M Y, Wang S D, et al. Analysis of hail weather based on decision-making tree using radar data in Tianjin. Meteor Sci Technol, 2017, 45(2): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201702020.htm
|
[23] |
Pu W Y, Li H B, Song Y, et al. Analysis and application of the effect of 0℃ layer height on melting hail. Meteor Mon, 2015, 41(8): 980-985. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201508007.htm
|
[24] |
Yu X D. A note on the melting level of hail. Meteor Mon, 2014, 40(6): 649-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201406001.htm
|
[25] |
Steiner M, Smith J. Use of three-dimensional reflectivity structure for automated detection and removal of non-precipitating echoes in radar data. J Atmos Ocean Technol, 2014, 40(6): 649-654.
|
[26] |
Liu B J, Zhang Y P, Li Z J, et al. An objective hailstorm labeling algorithm based on ground observation. J Appl Meteor Sci, 2021, 32(1): 78-90. doi: 10.11898/1001-7313.20210107
|
[27] |
Wang Y F, Huang W B, Wang J J, et al. Analysis on the characteristic of radar echo and the causes of a strong hail in Tianshui City of Gansu Province. Plateau Meteor, 2019, 38(2): 368-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201902013.htm
|
[28] |
Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstone. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602
|
[29] |
Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi: 10.11898/1001-7313.20220206
|
[30] |
Knox J A, Nevius D S, Knox P N. Two simple and accurate approximations for wet-bulb temperature in moist conditions with forecasting applications. Bull Amer Meteor Soc, 2017, 98(9): 1897-1906.
|
[31] |
Xiu Y Y, Han L, Feng H L. The identification of strong convective weather based on machine learning methods. Electronic Design Engineering, 2016, 24(9): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201609002.htm
|
[32] |
Chen X L, Liu J, Zheng Q F, et al. A study on radar echo nowcasting based on convolutional gated recurrent unit neural network. Plateau Meteor, 2020, 40(2): 411-423. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102018.htm
|
[33] |
Zhang G C. Analysis and Forecast for Severe Convective Weather. Beijing: China Meteorological Press, 2011.
|
[34] |
Li Y, Chen H L. Review of machine learning approaches for modern agrometeoroly. J Appl Meteor Sci, 2020, 31(3): 257-266. doi: 10.11898/1001-7313.20200301
|
[35] |
Shi D W, Zhang J, Cao Q, et al. Research on sea fog diagnosis in Haizhou Bay based on decision tree algorithm. J Meteor Sci, 2022, 42(1): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202201015.htm
|
[36] |
Yu X D, Zhou X G, Wang X M, et al. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203001.htm
|
[37] |
Yu X D, Wang X M, Li W L, et al. Thunderstorm and Strong Convection Nowcasting. Beijing: China Meteorological Press, 2020.
|
[38] |
Li B Y, Hu Z Q, Zheng J F, et al. Using Bayesian method to improve hail identification in South China. J Trop Meteor, 2021, 37(1): 112-125. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202101011.htm
|
[39] |
Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. doi: 10.11898/1001-7313.20220303
|
[40] |
Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. doi: 10.11898/1001-7313.20210502
|