Cui Peng, Wang Sujuan, Lu Feng, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. DOI:  10.11898/1001-7313.20230301.
Citation: Cui Peng, Wang Sujuan, Lu Feng, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. DOI:  10.11898/1001-7313.20230301.

FY-4A/AGRI Sea Surface Temperature Product and Quality Validation

DOI: 10.11898/1001-7313.20230301
  • Received Date: 2022-12-30
  • Rev Recd Date: 2023-03-13
  • Publish Date: 2023-05-31
  • Fengyun-4A (FY-4A) is the first satellite of China's second-generation geostationary orbit meteorological satellites. The advanced geostationary radiation imager (AGRI), a multiple channel radiation imager, is one of the primary payloads onboard FY-4A. As one basic quantitative remote sensing product, the operational sea surface temperature (SST) is derived with the split-window nonlinear SST (NLSST) algorithm in real time. The operational NLSST procedures and products are described in detail. The FY-4A/AGRI SST products provide full-disk SST with spatial resolution of 4 km at the nadir. The quality level information is delivered with each pixel to provide information about the conditions of the processing. Quality level for each pixel information is defined as follows: Excellent, good, bad and unprocessed (cloud, land, no satellite data etc.). The users can select the SST data with certain quality level according to their application purposes (e.g., for climate-related studies, only the SST data with the excellent quality level in the time series are used, and for identifying and tracking specific ocean features, users may be more tolerant of lower-quality SST data). The accuracy of FY-4A/AGRI SST algorithm is assessed by determining the standard deviation and bias errors from the regression procedure of the matchup database between satellite data and quality controlled SST data from NOAA in situ SST quality monitor, from July 2021 to June 2022. The validation methods and results are described in detail. The matchup database combining FY-4A/AGRI measurements and in situ SST have been built on a routine basis. At the stage of the matchup database in association with the drifter temperatures, the matchup database is composed of pixels under clear sky conditions. The FY-4A/AGRI SST data with excellent quality level are compared with drifting and tropical moored buoy data. The matchup space-time window is 4 km and 30 min from the buoy location to the center of the SST pixel. The comparison shows a bias of -0.45 to -0.42℃ and a standard deviation of 0.81-0.88℃ for FY-4A/AGRI SST with excellent quality. The correlation coefficients between FY-4A/AGRI SST and buoy SST are better than 0.985. The FY-4A/AGRI SST are also compared with the ACSPO SST produced at NOAA/STAR from the Himawari-8/AHI (advanced Himawari imager). The comparison shows a bias of -0.26 to -0.07℃ and a standard deviation of 0.68-0.82℃ with excellent quality level. The correlation coefficients between FY-4A/AGRI SST and Himawari-8/AHI are better than 0.985. The correlation coefficients shows that there is a good correlation between FY-4A/AGRI SST and Himawari-8/AHI SST.
  • Fig. 1  Histogram of difference between FY-4A/AGRI SST and buoy SST from Jul 2021 to Jun 2022

    Fig. 2  Scatter density map of FY-4A/AGRI SST and buoy SST from Jul 2021 to Jun 2022

    Fig. 3  Biases in 5°×5° square of FY-4A/AGRI SST against buoy SST from Jul 2021 to Jun 2022

    Fig. 4  Time series of bias and standard deviation of FY-4A/AGRI SST relative to buoy SST from Jul 2021 to Jun 2022

    Fig. 5  Time series of bias and standard deviation of excellent quality FY-4A/AGRI SST relative to Himawari-8/AHI SST from Jul 2021 to Jun 2022

    Fig. 6  Scatter density map of FY-4A/AGRI SST and Himawari-8/AHI SST

    (a)1 Jul, 1 Aug and 1 Sep in 2021, (b)1 Oct, 1 Nov and 1 Dec in 2021, (c)1 Jan, 1 Feb and 1 Mar in 2022, (d)1 Apr, 1 May and 1 Jun in 2022

    Table  1  SST deviation of FY-4A/AGRI NLSST algorithm

    统计量 白天 夜间
    偏差/℃ 0.01 0.05
    绝对偏差/℃ 0.5 0.53
    标准差/℃ 0.61 0.66
    样本量 7381 7803
    DownLoad: Download CSV

    Table  2  Error information of FY-4A/AGRI SST relative to buoy SST

    时段 统计量
    白天 平均偏差/℃ -0.45 -1.00 -2.25
    标准差/℃ 0.81 0.94 1.94
    样本量 171473 81570 35607
    夜间 平均偏差/℃ -0.42 -0.99 -2.94
    标准差/℃ 0.88 1.03 1.99
    样本量 199364 92084 76844
    晨昏 平均偏差/℃ -0.42 -1.02 -2.80
    标准差/℃ 0.85 0.99 1.97
    样本量 28501 12386 8598
    DownLoad: Download CSV
  • [1]
    Ignatov A.GOES-R Advanced Baseline Imager(ABI) Algorithm Theoretical Basis Document for Sea Surface Temperature.[2022-11-29].https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_SST-v2.0_Aug2010.pdf.
    [2]
    Donlon C, Martin M, Stark J, et al. The operational sea surface temperature and sea ice analysis(OSTIA) system. Remote Sens Environ, 2012, 116: 140-158. doi:  10.1016/j.rse.2010.10.017
    [3]
    Ke Z J, Hua L J, Zhong L H, et al. The influence of sea surface temperature anomaly on the East Asian summer monsoon strength and its precursor. J Appl Meteor Sci, 2015, 26(5): 536-544. doi:  10.11898/1001-7313.20150503
    [4]
    Brasnett B. The impact of satellite retrievals in a global sea-surface-temperature analysis. Quart J Roy Meteor Soc, 2008, 134(636): 1745-1760. doi:  10.1002/qj.319
    [5]
    Wang S J, Cui P, Zhang P, et al. FY-3C/VIRR sea surface temperature products and quality validation. J Appl Meteor Sci, 2020, 31(6): 729-739. doi:  10.11898/1001-7313.20200608
    [6]
    Cayula J F P, May D A, McKenzie B D, et al. VⅡRS-derived SST at the naval oceanographic office: From evaluation to operation. Proc SPIE. 2013, 8724: 87240S. doi:  10.1117/12.2017965
    [7]
    Brasnett B, Colan D S. Assimilating retrievals of sea surface temperature from VⅡRS and AMSR2. J Atmos Ocean Technol, 2016, 33(2): 361-375. doi:  10.1175/JTECH-D-15-0093.1
    [8]
    Maturi E, Harris A, Mittaz J, et al. A new high-resolution sea surface temperature blended analysis. Bull Amer Meteor Soc, 2017, 98(5): 1015-1026. doi:  10.1175/BAMS-D-15-00002.1
    [9]
    Le Borgne P, Legendre G, Marsouin A. Operational SST Retrieval from MSG/SEVIRI Data. The 2006 EUMETSAT Meteorological Satellite Conference, 2006.
    [10]
    Schmit T J, Gunshor M M, Menzel W P, et al. Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull Amer Meteor Soc, 2005, 86(8): 1079-1096. doi:  10.1175/BAMS-86-8-1079
    [11]
    Anding D, Kauth R. Estimation of sea surface temperature from space. Remote Sens Environ, 1970, 1(4): 217-220. doi:  10.1016/S0034-4257(70)80002-5
    [12]
    Prabhakara C, Dalu G, Kunde V G. Estimation of sea surface temperature from remote sensing in the 11- to 13-μm window region. J Geophys Res, 1974, 79(33): 5039-5044. doi:  10.1029/JC079i033p05039
    [13]
    OSISAF. Geostationary Sea Surface Temperature Product User Manual. EUMETSAT, Berlin, 2011.
    [14]
    Kilpatrick K A, Podestá G P, Evans R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res, 2001, 106(C5): 9179-9197. doi:  10.1029/1999JC000065
    [15]
    Casey K S, Brandon T B, Cornillon P, et al. The Past, Present, and Future of the AVHRR Pathfinder SST Program. Springer Netherlands, 2010: 273-287.
    [16]
    Petrenko B, Ignatov A, Kihai Y, et al. Clear-sky mask for the advanced clear-sky processor for oceans. J Atmos Ocean Technol, 2010, 27(10): 1609-1623. doi:  10.1175/2010JTECHA1413.1
    [17]
    Saha K, Ignatov A, Liang X M, et al. Selecting a first-guess SST as input to ACSPO. Proc SPIE, 2012, 8372: 83720L. doi:  10.1117/12.918093
    [18]
    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [19]
    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
    [20]
    Zhang Z Q, Lu F, Fang X, et al. Application and development of FY-4 meteorological satellite. Aerospace Shanghai, 2017, 34(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704002.htm
    [21]
    Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658. doi:  10.1175/BAMS-D-16-0065.1
    [22]
    Lu F, Zhang X H, Chen B Y, et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects. J Mar Meteor, 2017, 37(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702001.htm
    [23]
    Wang X, Min M, Wang F. Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans Geosci Remote Sens, 2019, 57(11): 8827-8839. doi:  10.1109/TGRS.2019.2923247
    [24]
    Xu F, Ignatov A. In situ SST quality monitor(iQuam). J Atmos Ocean Technol, 2014, 31(1): 164-180. doi:  10.1175/JTECH-D-13-00121.1
    [25]
    Kurihara Y, Murakami H, Kachi M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys Res Lett, 2016, 43(3): 1234-1240. doi:  10.1002/2015GL067159
    [26]
    Kramar M, Ignatov A, Petrenko B, et al. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system. Proc SPIE, 2016, 9827: 98270L.
    [27]
    McClain E P, Pichel W G, Walton C C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J Geophys Res Oceans, 1985, 90(6): 11587-11601.
    [28]
    Walton C C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. J Appl Meteorol, 1988, 27(2): 115-124. doi:  10.1175/1520-0450(1988)027<0115:NMAFES>2.0.CO;2
    [29]
    Wang S J, Cui P, Zhang P, et al. The improvement of FY-3B/VIRR SST algorithm and its accuracy. J Appl Meteor Sci, 2014, 25(6): 701-710. http://qikan.camscma.cn/article/id/20140606
    [30]
    Wei C Y, Zhang X H, Zhao X G, et al. FY-2 meteorological satellite attitude solving method under area scan mode. J Appl Meteor Sci, 2014, 25(5): 592-599. http://qikan.camscma.cn/article/id/20140508
    [31]
    Wang S J, Guo Q, Xu J M. Guide star sub catalog method for FY-4 meteorological satellite. J Appl Meteor Sci, 2010, 21(2): 149-156. http://qikan.camscma.cn/article/id/20100203
    [32]
    Lu F, Xu J M, Zhang Q S. Impact study of attitude and pitch misalignment parameters on FY-2 image navigation with simulation method. J Appl Meteor Sci, 2001, 12(4): 393-399. http://qikan.camscma.cn/article/id/20010454
    [33]
    Gu S Y, Qiu H, Fan T X. Inter-calibration between FY-2A IR channel and GMS-5 IRA channel. J Appl Meteor Sci, 2001, 12(1): 79-84. http://qikan.camscma.cn/article/id/20010109
    [34]
    Yang Z D, Liu J. A review of visible infrared imaging radiometer on meteorological satellite. J Appl Meteor Sci, 2016, 27(5): 592-603. doi:  10.11898/1001-7313.20160508
    [35]
    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [36]
    Liu J, Cui P, Xiao M. The bias analysis of FY-2G cloud fraction in summer and winter. J Appl Meteor Sci, 2017, 28(2): 177-188. doi:  10.11898/1001-7313.20170205
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (803) PDF downloads(119) Cited by()
    • Received : 2022-12-30
    • Accepted : 2023-03-13
    • Published : 2023-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint