高度 | GPS | BDS | |||
平均偏差/K | 标准偏差/K | 平均偏差/K | 标准偏差/K | ||
500 hPa至225 hPa | -1.22 | 2.13 | -0.81 | 1.45 | |
200 hPa至100 hPa | -0.17 | 1.07 | -0.05 | 0.83 | |
70 hPa至1 hPa | 0.01 | 4.26 | 0.41 | 3.96 | |
500 hPa至1 hPa | -0.46 | 2.49 | -0.15 | 2.08 |
Citation: | Liao Mi, Zhang Peng, Liu Jian, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. DOI: 10.11898/1001-7313.20230302. |
Table 1 Mean deviation and mean standard deviation of FY-3E GPS and BDS radio occultation dry temperature profile at different altitudes
高度 | GPS | BDS | |||
平均偏差/K | 标准偏差/K | 平均偏差/K | 标准偏差/K | ||
500 hPa至225 hPa | -1.22 | 2.13 | -0.81 | 1.45 | |
200 hPa至100 hPa | -0.17 | 1.07 | -0.05 | 0.83 | |
70 hPa至1 hPa | 0.01 | 4.26 | 0.41 | 3.96 | |
500 hPa至1 hPa | -0.46 | 2.49 | -0.15 | 2.08 |
Table 2 Mean bias and deviation of radio occultation dry temperature from 300 hPa to 30 hPa
卫星产品 | 平均偏差/K | 标准偏差/K |
FY-3C GPS | -0.10 | 1.09 |
FY-3D GPS | -0.15 | 1.08 |
FY-3D BDS | -0.01 | 1.13 |
FY-3E GPS | -0.22 | 1.34 |
FY-3E BDS | -0.15 | 0.99 |
[1] |
Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304
|
[2] |
Zhang R H. Climate observing system and related crucial issues. J Appl Meteor Sci, 2006, 17(6): 705-710. http://qikan.camscma.cn/article/id/200606119
|
[3] |
Zhao P, Nan S L. Some advances in climate and climate change research. J Appl Meteor Sci, 2006, 17(6): 725-735. http://qikan.camscma.cn/article/id/200606121
|
[4] |
Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605
|
[5] |
Hurrell J W, Trenberth K E. Spurious trends in satellite MSU temperatures from merging different satelliterecords. Nature, 1997, 386: 164-167. doi: 10.1038/386164a0
|
[6] |
Gu S Y, Wang Z Z, Li J, et al. The radiometric characteristics of sounding channels for FY-3A/MWHS. J Appl Meteor Sci, 2010, 21(3): 335-342. doi: 10.3969/j.issn.1001-7313.2010.03.009
|
[7] |
Nash J, Forrester G F. Long-term monitoring of stratospheric temperature trends using radiance measurements obtained by the TIROS-N series of NOAA spacecraft. Adv Space Res, 1986, 6(10): 37-44. doi: 10.1016/0273-1177(86)90455-2
|
[8] |
Ohring G, Wielicki B, Spencer R, et al. Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull Amer Meteor Soc, 2005, 86(9): 1303-1313. doi: 10.1175/BAMS-86-9-1303
|
[9] |
Christy J R, Spencer R W, Lobl E S. Analysis of the merging procedure for the MSU daily temperature time series. J Climate, 1998, 11: 2016-2041. doi: 10.1175/1520-0442(1998)011<2016:AOTMPF>2.0.CO;2
|
[10] |
Mears C A, Wentz F J. Construction of the remote sensing systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J Atmos Oceanic Technol, 2008, 26: 1040-1056.
|
[11] |
Po-Chedley S, Thorsen T J, Fu Q. Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J Climate, 2015, 28: 2274-2290. doi: 10.1175/JCLI-D-13-00767.1
|
[12] |
Spencer R W, Christy J R. Precise monintoring of global temperature trends from satellite. Science, 1990, 247: 1558-1562. doi: 10.1126/science.247.4950.1558
|
[13] |
Fu Q, Johanson C M. Stratospheric influences on MSU-derived tropospheric temperature trends: A direct error analysis. J Climate, 2004, 17: 4636-4640. doi: 10.1175/JCLI-3267.1
|
[14] |
Zou C Z, Gao M. A long-term atmospheric temperature dataset derived from NOAA microwave sounding unit with cross-calibration. J Appl Meteor Sci, 2008, 19(5): 582-587. doi: 10.3969/j.issn.1001-7313.2008.05.009
|
[15] |
Thorne P W, Lanzante J R, Peterson T C, et al. Tropospheric temperature trends: History of an ongoing controversy. WIREs Clim Change, 2011, 2(1): 66-88. doi: 10.1002/wcc.80
|
[16] |
Melbourne W G, Davis E S, Duncan C B, et al. The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring. Pasadena, Calif: Jet Propulsion Laboratory, 1994.
|
[17] |
Ware R, Rocken C, Solheim F, et al. GPS sounding of the atmosphere from lower earth orbit: Preliminary results. Bull Amer Meteor Soc, 1996, 77: 19-40. doi: 10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2
|
[18] |
Sokolovskiy S V. Tracking tropospheric radio occultation signals from low earth orbit. Radio Sci, 2001, 36(3): 483-498. doi: 10.1029/1999RS002305
|
[19] |
Steiner A K, Ladstädter F, Randel W J, et al. Observed temperature changes in the troposphere and stratosphere from 1979 to 2018. J Climate, 2020, 33: 8165-8194. doi: 10.1175/JCLI-D-19-0998.1
|
[20] |
Gleisner H, Ringer M A, Healy S B. Monitoring global climate change using GNSS radio occultation. npj Climate Atmos Sci, 2022, 5: 6. doi: 10.1038/s41612-022-00229-7
|
[21] |
Kursinski E, Hajj G A, Bertiger W I, et al. Initial results of radio occultation observations of earth's atmosphere using the Global Positioning System. Science, 1996, 271: 1107-1110. doi: 10.1126/science.271.5252.1107
|
[22] |
Rocken C, Anthes R, Exner M, et al. Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res, 1997, 102: 29849-29866. doi: 10.1029/97JD02400
|
[23] |
Schreiner W S, Weiss J P, Anthes R A, et al. COSMIC-2 radio occultation constellation: First results. Geophys Res Lett, 2020, 47: e2019GL086841.
|
[24] |
Anthes R, Sjoberg J, Feng, X L, et al. Comparison of COSMIC and COSMIC-2 radio occultation refractivity and bending angle uncertainties in August 2006 and 2021. Atmosphere, 2022, 13(5): 790. doi: 10.3390/atmos13050790
|
[25] |
Kursinski E R, Hajj G A, Schofield J T, et al. Observing earth's atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res, 1997, 102(D19): 23429-23465. doi: 10.1029/97JD01569
|
[26] |
SteinerA K, Ladstädter F, Ao C O, et al. Consistency and structural uncertainity of multi-mission GPS radio occultation records. Atmos Meas Tech, 2020, 13(5): 2547-2575. doi: 10.5194/amt-13-2547-2020
|
[27] |
Ho S P, Hunt D C, Steiner A K, et al. Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile intercomparison of CHAMP climate records 2002 to 2008 from six data centers. J Geophys Res, 2012, 117: D18111.
|
[28] |
Ladstädter F, Steiner A K, Schwärz M, et al. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013. Atmos Meas Tech, 2015, 8: 1819-1834. doi: 10.5194/amt-8-1819-2015
|
[29] |
Gleisner H, Lauritsen K B, Nielsen J K, et al. Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record. Atmos Meas Tech, 2020, 13: 3081-3098. doi: 10.5194/amt-13-3081-2020
|
[30] |
Liao M, Zhang P, Bi Y M, et al. A preliminary estimation of the radio occultation products accuracy from the Fengyun-3C meteorological satellite. Acta Meteor Sinica, 2015, 73(6): 1131-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201506011.htm
|
[31] |
Liao M, Healy S B, Zhang P. Processing and quality control of FY-3C GNOS data used in numerical weather prediction applications. Atmos Meas Tech, 2019, 12(5): 2679-2692. doi: 10.5194/amt-12-2679-2019
|
[32] |
Liao M, Zhang P, Yang G L, et al. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C. Atmos Meas Tech, 2016, 9: 781-792. doi: 10.5194/amt-9-781-2016
|
[33] |
Wang S Z, Zhu G W, Bai W H, et al. For the first time Fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation. Acta Physica Sinica, 2015, 64(8): 089301. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201508054.htm
|
[34] |
Healy S, Eyre J. Retrieving temperature water vapour and surface pressure information from a refractive-index profiles derived by radio occultation: A simulation study. Quart J Roy Meteor Soc, 2000, 126: 1661-1683.
|
[35] |
Poli P, Joiner J, Kursinski E R. 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J Geophys Res, 2002, 107(D20): 4448.
|
[36] |
Phinney R A, Anderson D L. On the radio occultation method for studing planetary atmospheres. J Geophys Res, 1968, 73(5): 1819-1827.
|
[37] |
Smith E K, Weintraub S. The constants in the equation for atmosphere index at radio frequencies. Proc IRE, 1953, 41(8): 1035-1037.
|
[38] |
Danzer J, Foelsche U, Scherllin-Pirscher B, et al. Influence of changes in humidity on dry temperature in GPS RO climatologies. Atmos Meas Tech, 2014, 7: 2883-2896.
|
[39] |
Schwärz M, Scherllin-Pirscher B, Kirchengast G, et al. Multi-mission Validation by Satellite Radio Occultation. Final Report for ESA/ESRIN No. 01/2013, WEGC, University of Graz, Austria, 2013.
|
[40] |
Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105
|
[41] |
Liu J, Wang X J. Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci, 2017, 28(6): 654-665. doi: 10.11898/1001-7313.20170602
|
[42] |
Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. doi: 10.11898/1001-7313.20200102
|