[1]
|
Lin Y. Course of Atmospheric Exploration. Beijing: China Meteorological Press, 1995.
|
[2]
|
Liu J, Zhang W J, Zhu Y J, et al. Case study on cloud properties of heavy rainfall based upon satellite data. J Appl Meteor, 2007, 18(2): 158-164. doi: 10.3969/j.issn.1001-7313.2007.02.004
|
[3]
|
Zhang Y C, Rossow W B, Lacis A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J Geophys Res, 2004, 109(D19): D19105. doi: 10.1029/2003JD004457
|
[4]
|
Rossow W B, Walker A W, Beuschel D E, et al. International Satellite Cloud Climatology Project(ISCCP) Documentation of New Cloud Datasets. WMO TD-No. 737, 1996: 1-115.
|
[5]
|
|
[6]
|
Xiao H X, Zhang F, Wang Y Q, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233. doi: 10.11898/1001-7313.20230208
|
[7]
|
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[8]
|
|
[9]
|
Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308
|
[10]
|
Weng L G, Zhang X, Xia M, et al. Simulation study on accurate detection of satellite meteorological cloud images. Computer Simulation, 2019, 36(1): 429-436. doi: 10.3969/j.issn.1006-9348.2019.01.089
|
[11]
|
Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi: 10.11898/1001-7313.20220605
|
[12]
|
Ren S L, Fang X, Lu N M, et al. Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Appl Meteor Sci, 2019, 30(3): 345-359. doi: 10.11898/1001-7313.20190308
|
[13]
|
Yang J. Meteorological Satellites and Their Applications. Beijing: China Meteorological Press, 2012.
|
[14]
|
Ren Q, Dong P M, Xue J S. The use of microwave satellite data affected by cloud in numerical forecast of typhoon. J Appl Meteor Sci, 2009, 20(2): 137-146. doi: 10.3969/j.issn.1001-7313.2009.02.002
|
[15]
|
Seze G, Rossow W B. Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations. Int J Remote Sens, 1991, 12(5): 877-920. doi: 10.1080/01431169108929702
|
[16]
|
|
[17]
|
Wylie D, Jackson D L, Menzel W P, et al. Trends in global cloud cover in two decades of HIRS observations. J Climate, 2005, 18(15): 3021-3031.
|
[18]
|
Rossow W B, Garder L C. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J Climate, 1993, 6(12): 2341-2369.
|
[19]
|
|
[20]
|
|
[21]
|
|
[22]
|
Liu C, Yang S, Di D, et al. A Machine learning-based cloud detection algorithm for the Himawari-8 spectral image. Adv Atmos Sci, 2022, 39: 1994-2007.
|
[23]
|
Amato U, Antoniadis A, Cuomo V, et al. Statistical cloud detection from SEVIRI multispectral images. Remote Sens Environ, 2008, 112(3): 750-766.
|
[24]
|
Gomez-Chova L, Camps-Valls G, Amoros-Lopez J, et al. New Cloud Detection Algorithm for Multispectral and Hyperspectral Images: Application to ENVISAT/MERIS and PROBA/CHRIS Sensors//IEEE International Conference on Geoscience and Remote Sensing Symposium(GRSS), 2007: 2757-2760.
|
[25]
|
Hughes M, Daniel H. Automated detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing. Remote Sensing, 2014, 6(6): 4907-4926.
|
[26]
|
|
[27]
|
Francis A, Sidiropoulos P, Muller J P. CloudFCN: Accurate and robust cloud detection for satellite imagery with deep learning. Remote Sensing, 2019, 11(19): 2312.
|
[28]
|
|
[29]
|
|
[30]
|
Merchant C J, Harris A R, Maturi E, et al. Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. Quart J Roy Meteor Soc, 2010, 131(611): 2735-2755.
|
[31]
|
Heidinger A K, Evan A T, Foster M J, et al. A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J Appl Meteor Climatol, 2012, 51(6): 1129-1144.
|
[32]
|
Frey R A, Ackerman S A, Liu Y H, et al. Cloud detection with MODIS. Part Ⅰ: Improvements in the MODIS cloud mask for collection 5. J Atmos Ocean Technol, 2008, 25(7): 1057-1072.
|
[33]
|
Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658.
|
[34]
|
Wang X, Min M, Wang F, et al. Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans Geosci Remote Sens, 2019, 57(11): 8827-8839.
|
[35]
|
Zhuge X Y, Zou X, Wang Y. A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems. IEEE Trans Geosci Remote Sens, 2017, 55(11): 6111-6119.
|
[36]
|
|
[37]
|
Seemann S W, Borbas E E, Knuteson R O, et al. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multi-spectral satellite radiance measurements. J Appl Meteor Climatol, 2007, 47(1): 108-123.
|
[38]
|
|