Gao Panliang, Shi Dongdong, Wu Ting, et al. Characteristics of the preliminary breakdown in inverted-polarity intracloud lightning flashes. J Appl Meteor Sci, 2023, 34(3): 324-335. DOI:  10.11898/1001-7313.20230306.
Citation: Gao Panliang, Shi Dongdong, Wu Ting, et al. Characteristics of the preliminary breakdown in inverted-polarity intracloud lightning flashes. J Appl Meteor Sci, 2023, 34(3): 324-335. DOI:  10.11898/1001-7313.20230306.

Characteristics of the Preliminary Breakdown in Inverted-polarity Intracloud Lightning Flashes

DOI: 10.11898/1001-7313.20230306
  • Received Date: 2022-12-09
  • Rev Recd Date: 2023-03-16
  • Publish Date: 2023-05-31
  • The intracloud (IC) flashes can be classified into normal and inverted-polarity types according to their initial leader propagation directions. Due to the rare occurrence of inverted-polarity IC flashes with downward preliminary breakdown (PB) processes, the corresponding PB characteristics are much less understood than those in normal IC flashes.Based on the lightning data observed by a low-frequency lightning mapping system FALMA (fast antenna lightning mapping array) deployed in Ningxia, the characteristics of the PB process in 312 inverted-polarity IC flashes are statistically analyzed. The parameters of PB waveforms show that the arithmetical mean (AM) of the PB duration is 9.8 ms. The pulse shape is characterized by rise time, half-peak width, fall time, and pulse width, respectively, with AM values of 7.3 μs, 4.5 μs, 5.6 μs, and 24.7 μs. The pulse rate and pulse interval are 5.7 ms-1 and 169.2 μs.The statistical results for PB channels show that the inverted-polarity IC flashes are usually initiated at the AM altitude about 6.9 km, obviously higher than the initiation altitude of normal-polarity IC flashes. The difference indicates that there could be an inverted dipolar charge structure in the thunderclouds of Ningxia. The superposition of PB locations on the radar reflectivity suggests that these inverted IC flashes tend to be initiated in the region with radar echoes weaker than normal IC flashes (19.3 versus 27.8 dBZ). The vertical length and speed of PB channels are 2.0 km and 2.8×105 m·s-1.Furthermore, PB parameters show significant correlations with the initiation altitude. Specifically, both vertical speed and pulse rate decrease with the initiation altitude, and the correlation coefficients are -0.44 and -0.53, respectively. However, both PB durations and vertical distances show positive correlations with the initiation altitude, with the coefficients of 0.64 and 0.46, respectively.In general, the PB characteristics of inverted IC flashes present both similarities and differences to the PB processes in other flash types. It is believed more lightning observations in the northwest inland of China can facilitate the interpretation of these similarities and differences.
  • Fig. 1  Distributions of lightning source density(the shaded) and initiation locations of inverted-polarity intracloud flashes of thunderstorms in Ningxia on 2 Aug and 5 Aug in 2019

    (triangles and dots denote FALMA sites and lightning initiations, the central position (0, 0) corresponds to 38.4°N, 106.2°E)

    Fig. 2  A case of an inverted-polarity intracloud flash occurring at 165841.8 UTC 5 Aug 2019

    (a)electric field change waveform of inverted-polarity intracloud flash, (b)source located height varying with time, (c)electric field change waveform of PB process and source located height

    Fig. 3  Recognizing pulses in PB waveform

    (a)cumulative probability distribution of negative pulse amplitudes, (b)recognized pulses with amplitudes higher than noise level

    Fig. 4  Histogram of PB duration

    Fig. 5  Histogram of pulse structure parameters

    Fig. 6  Histograms of pulse rate and pulse interval

    Fig. 7  Histogram of initiation altitude of inverted-polarity intracloud flashes

    Fig. 8  Histogram of combined reflectivity of PB initiation altitude

    Fig. 9  Radar reflectivity and corresponding AB section on 5 Aug 2019

    (blue and gray triangles denote PB initiations of normal and inverted-polarity flashes)

    Fig. 10  Histogram of PB vertical propagating distance

    Fig. 11  Histogram of PB vertical speed

    Fig. 12  Relationship between PB parameters and initiation altitude

  • [1]
    Lü W T, Chen L W, Ma Y, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. doi:  10.11898/1001-7313.20200201
    [2]
    Yu J H, Tan Y B, Zheng T X, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. doi:  10.11898/1001-7313.20200609
    [3]
    Ren X Y, Zhang Y J, Lü W T, et al. Simulation of lightning leaders and connection process with structures. J Appl Meteor Sci, 2010, 21(4): 450-457. http://qikan.camscma.cn/article/id/20100408
    [4]
    Lei Y N, Tan Y B, Yu J H, et al. Numerical simulation on multiple upward leader attachment process of tall and low buildings. J Appl Meteor Sci, 2022, 33(1): 80-91. doi:  10.11898/1001-7313.20220107
    [5]
    Weidman C D, Krider E P. The radiation field wave forms produced by intracloud lightning discharge processes. J Geophys Res, 1979, 84(C6): 3159-3164. doi:  10.1029/JC084iC06p03159
    [6]
    Zhang X, Zhang Y, Zhang Y J, et al. Initial stage of lightning discharges initiated by NBE and IBP. J Appl Meteor Sci, 2018, 29(3): 364-373. doi:  10.11898/1001-7313.20180310
    [7]
    Wu B, Zhang G S, Wen J, et al. The characteristic and current model of radiation impulse in lightning initial preliminary breakdown process. J Appl Meteor Sci, 2017, 28(5): 555-567. doi:  10.11898/1001-7313.20170504
    [8]
    Gomes C, Cooray V, Jayaratne C. Comparison of preliminary breakdown pulses observed in Sweden and in Sri Lanka. J Atmos Sol Terr Phys, 1998, 60(10): 975-979. doi:  10.1016/S1364-6826(98)00007-8
    [9]
    Baharudin Z A, Ahmad N A, Fernando M, et al. Comparative study on preliminary breakdown pulse trains observed in Johor, Malaysia and Florida, USA. Atmos Res, 2012, 117: 111-121. doi:  10.1016/j.atmosres.2012.01.012
    [10]
    Makela J S, Porjo N, Makela A, et al. Properties of preliminary breakdown processes in Scandinavian lightning. J Atmos Sol Terr Phys, 2008, 70: 2041-2052. doi:  10.1016/j.jastp.2008.08.013
    [11]
    Wang Y, Qie X S, Wang D F, et al. Comparisons of preliminary breakdown pulse trains in positive and negative cloud-to-ground lightning flashes. Chinese J Atmos Sci, 2014, 38(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201401003.htm
    [12]
    Kitagawa N, Brook M. A comparison of intracloud and cloud-to-ground lightning discharges. J Geophys Res, 1960, 65: 1189-1201. doi:  10.1029/JZ065i004p01189
    [13]
    Villanueva Y, Rakov V A, Uman M A, et al. Microsecond-scale electric field pulses in cloud lightning discharges. J Geophys Res Atmos, 1994, 99(D7): 14353-14360. doi:  10.1029/94JD01121
    [14]
    Nag A, Decarlo B A, Rakov V A. Analysis of microsecond- and submicrosecond-scale electric field pulses produced by cloud and ground lightning discharges. Atmos Res, 2009, 91(2): 316-325. https://www.sciencedirect.com/science/article/pii/S0169809508002020
    [15]
    Qie X S, Yu Y, Wang D H, et al. Characteristics of cloud-to-ground lightning in Chinese inland plateau. J Meteor Soc Japan, 2002, 80(4): 745-754. doi:  10.2151/jmsj.80.745
    [16]
    Wang H, Zheng D, Zhang Y J, et al. Variation characteristics of cloud flashes initial breakdown electric field observed in Beijing and Guangzhou. Meteorological and Environmental Sciences, 2016, 39(3): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201603004.htm
    [17]
    Zhang Y, Zhang Y J, Lu W T, et al. Analysis and comparison of initial breakdown pulses for positive cloud-to-ground flashes observed in Beijing and Guangzhou. Atmos Res, 2013, 129(7): 34-41. https://www.sciencedirect.com/science/article/pii/S0169809513000902
    [18]
    Cao D J, Qie X S, Yang J, et al. Analysis on the characteristics of sub-microsecond electric field change waveforms during the initial stage of lightning discharge. Chinese J Atmos Sci, 2011, 35(4): 645-656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201104005.htm
    [19]
    Wang Y, Qie X, Wang D, et al. Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes. Atmos Res, 2015, 171: 121-132. https://www.sciencedirect.com/science/article/pii/S0169809515004020
    [20]
    Wu T, Yoshida S, Akiyama Y, et al. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation. J Geophys Res Atmos, 2015(120): 9071-9086.
    [21]
    Wang D F, Qie X S, Yuan T, et al. An analysis on the initial stage of intracloud lightning with the location technique of fast electric field change pulses. Acta Meteor Sinica, 2009, 67(1): 165-174. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901018.htm
    [22]
    Yoshida S, Wu T, Ushio T, et al. Initial results of LF sensor network for lightning observation and characteristics of lightning emission in LF band. J Geophys Res Atmos, 2014, 119(21): 12034-12051.
    [23]
    Zheng D, Zhang Y, Meng Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J Geophys Res Atmos, 2018, 123: 12857-12876. doi:  10.1029/2018JD028824
    [24]
    Zheng D, Shi D D, Zhang Y, et al. Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions. J Geophys Res Atmos, 2019, 124: 8025-8042.
    [25]
    Wang D H, Liu X S, Wang C W. A preliminary analysis of the characteristics of ground discharges in thunderstorms near Zhongchuan, Gansu Province. Plateau Meteor, 1990, 9(4): 405-410. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199004007.htm
    [26]
    Li Y J, Zhang G S, Wen J, et al. Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping. Atmos Res, 2013, 134: 137-149.
    [27]
    Zhang Y J, Xu L T, Zheng D, et al. Review on inverted charge structure of severe storms. J Appl Meteor Sci, 2014, 25(5): 513-526. http://qikan.camscma.cn/article/id/20140501
    [28]
    Li Y, Zhang G, Wang Y, et al. Observation and analysis of electrical structure change and diversity in thunderstorms on the Qinghai-Tibet Plateau. Atmos Res, 2017, 194: 130-141. https://www.sciencedirect.com/science/article/pii/S0169809516304495
    [29]
    Liu X S, Guo C M, Wang W C. The surface electrostatic field-change produced by lightning flashes and the lower positive charge layer of the thunderstorm. Acta Meteor Sinica, 1987, 45(4): 500-504. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198704015.htm
    [30]
    Qie X, Kong X, Zhang G, et al. The possible charge structure of thunderstorm and lightning discharges in northeastern verge of Qinghai-Tibetan Plateau. Atmos Res, 2005, 76(1/2/3/4): 231-246. https://www.sciencedirect.com/science/article/pii/S0169809505000591
    [31]
    Qie X, Zhang T, Chen C, et al. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys Res Lett, 2005, 32: 1-4.
    [32]
    Zhang T L, Qie X S, Yuan T, et al. The characteristics of cloud-to-ground lightning flashes and charge structure of a typical thunderstorm in Chinese inland plateau. Chinese J Atmos Sci, 2008, 32(5): 1221-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805018.htm
    [33]
    Qie X, Zhang T, Zhang G, et al. Electrical characteristics of thunderstorms in different plateau regions of China. Atmos Res, 2009, 91(2/3/4): 244-249. https://www.sciencedirect.com/science/article/pii/S0169809508001944
    [34]
    Wu T, Wang D, Takagi N. Lightning mapping with an array of fast antennas. Geophys Res Lett, 2018, 45(8): 3698-3705.
    [35]
    Gao P L, Wu T, Wang D H. Initial results of long-term continuous observation of lightning discharges by FALMA in Chinese inland plateau region. Atmosphere, 2021, 12(4): 514.
    [36]
    Shi D D, Gao P L, Wu T, et al. Pulse parameters and peak currents of return strokes observed by the Ningxia FALMA in the Chinese inland areas. Remote Sens, 2022, 14: 1838.
    [37]
    Zhang Z X, Zheng D, Zhang Y J, et al. Identification method and analysis on the lightning flash initiation phase and size. J Appl Meteor Sci, 2017, 28(4): 414-426. doi:  10.11898/1001-7313.20170403
    [38]
    Shi D D, Wang D H, Wu T, et al. Correlation between the first return stroke of negative CG lightning and its preceding discharge processes. J Geophys Res Atmos, 2019, 124(15): 8501-8510. doi:  10.1029/2019JD030593
    [39]
    Zhu Y, Rakov V, Tran M. A study of preliminary breakdown and return stroke processes in high-intensity negative lightning discharges. Atmosphere, 2016, 7(10): 130.
    [40]
    Zhu B Y, Ma M, Tao S C. Measurement and comparison of VHF/VLF radiations of preliminary breakdown of cloud-to-ground and intracloud flashes. Plateau Meteor, 2003, 22(3): 239-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200303006.htm
    [41]
    Sharma S R, Fernando M, Gomes C. Signatures of electric field pulses generated by cloud flashes. J Atmos Sol Terr Phys, 2005, 67: 413-422. https://www.sciencedirect.com/science/article/pii/S1364682604002846
    [42]
    Cooray V, Lundquist S. Characteristics of radiation fields from lightning in Sri Lanka in the tropics. J Geophys Res, 1985, 90: 6099-6109. doi:  10.1029/JD090iD04p06099
    [43]
    Ahmad N A, Fernandoa M, Baharudina Z A, et al. The first electric field pulse of cloud and cloud-to-ground lightning discharges. J Atmos Sol Terr Phys, 2010, 72: 143-150. https://www.sciencedirect.com/science/article/pii/S1364682609002934
    [44]
    Shi D D, Wang D H, Wu T, et al. Temporal and spatial characteristics of preliminary breakdown pulses in intracloud lightning flashes. J Geophys Res Atmos, 2019, 124(23): 12901-12914. doi:  10.1029/2019JD031130
    [45]
    Liu H Y, Dong W S, Xu L T, et al. 3D spatial-temporal characteristics of initial breakdown process in lightning observed by broadband interferometer. J Appl Meteor Sci, 2016, 27(1): 16-24. doi:  10.11898/1001-7313.20160102
    [46]
    Li J, Cai L, Wang J, et al. Electrical field parameters of natural return strokes at different distances. IEEE Trans Electromagn Compat, 2022, 64(3): 786-794. https://ieeexplore.ieee.org/document/9686607/
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (980) PDF downloads(32) Cited by()
    • Received : 2022-12-09
    • Accepted : 2023-03-16
    • Published : 2023-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint