Sun Qinhong, Ma Hongbo, Qi Yanbin, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. DOI:  10.11898/1001-7313.20230307.
Citation: Sun Qinhong, Ma Hongbo, Qi Yanbin, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. DOI:  10.11898/1001-7313.20230307.

Distribution Characteristics of Raindrop Spectrum at Changbai Mountain Foothills in Summer of 2021

DOI: 10.11898/1001-7313.20230307
  • Received Date: 2023-02-07
  • Rev Recd Date: 2023-04-10
  • Publish Date: 2023-05-31
  • In order to better understand the distribution characteristics of raindrop particle spectrum at Changbai Mountain foothills in summer, the raindrop size distribution with different rainfall types and different rainfall intensities are analyzed based on the observations of Parsivel2 disdrometer at Jingyu, Jilin Province from June to August in 2021. The distribution characteristics of raindrop spectrum are also compared with relevant research results at home and abroad. The results show that the frequency of stratiform cloud rainfall is much higher than that of convective rainfall (88.16% vs 11.84%) in summer at Changbai Mountain foothills, but convective rainfall contributes more to the total rainfall intensity (47.78% vs 52.22%). The contribution of raindrop diameter to rainfall in summer increases first and then decreases, while the diameter of raindrop makes a greater contribution to rainfall ranging from 0.812 mm to 2.375 mm. For large particles (diameter D≥2.75 mm), the contribution of raindrops to rainfall also increase as rainfall intensity increasing. The spectra of convective rainfall has a larger spectrum width, mean number concentration and mean diameter than stratiform precipitation. The Gamma fitting curve underestimates the number concentrations of raindrops larger than 4.25 mm, especially for weak precipitation. Comparing with classical convective raindrop spectra, the normalized intercept parameter lgNw and the mass equivalent diameter parameter Dm of convective rainfall at Changbai Mountain foothills are closer to the oceanic-like cluster. The summer raindrops here have smaller diameter and higher number concentration compared with those of Yanqing and Daxing in North China, and Chuzhou and Pukou in East China. The reflectivity factor Z and rain rate R fitted relationships between convective rainfall and stratiform rainfall at Changbai Mountain foothills are Z=290.64R1.27 and Z=193.36R1.65, respectively. The rainfall of estimation using classical Z-R relationship (Z=300R1.40) is underestimated in this area, especially for heavy rainfall. The shape parameter μ and the slope parameter Λ of Gamma fitting function satisfy binomial relationship, while the parameter Λ increases with the increase of parameter μ. Besides, the shape parameter μ of raindrop spectrum at Changbai Mountain foothills is less than that in North China, East China and South China on the whole, when the slope parameter Λ is equal.
  • Fig. 1  Number of particles(the shaded) and relationship of raindrop diameter and falling velocity before and after quality control

    (the solid line denotes the theoretical relationship curve between raindrop diameter and the falling speed, dash-dot lines denote the range of ±60% of the theoretical relationship between raindrop diameter and the falling speed)

    Fig. 2  Distribution of mean number concentration and raindrop diameter for different rainfall types(a) and intensities(b)

    Fig. 3  Contribution of raindrop particle with different rainfall types(a) and intensities(b) to rainfall

    Fig. 4  Mean number concentration and fitting curve of Gamma function for different rainfall types(a) and intensities(b)

    Fig. 5  Scatter plot of lgNw-Dm for different rainfall types(a) and intensities(b)

    Fig. 6  Scatter plot of Z-R(the red circle) and fitting curve(the solid line) of summer rainfall at Changbai Mountain foothills

    Fig. 7  Scatter plot of μ-Λ and fitting curve

    Table  1  Fitting parameters of Gamma function of the raindrop spectrum in summer

    来源 拟合参数 对流降水 层云降水
    本研究 lgN0/(mm-1-μ·m-3) 4.44 4.00
    μ 2.01 1.05
    Λ/mm-1 3.69 4.19
    滁州[37] lgN0/(mm-1-μ·m-3) 4.44 4.46
    μ 2.51 2.24
    Λ/mm-1 3.64 5.21
    大兴[23] lgN0/(mm-1-μ·m-3) 4.05 3.98
    μ 1.10 1.08
    Λ/mm-1 2.59 3.98
    DownLoad: Download CSV

    Table  2  Comparison of averaged microphysical parameters for different rainfall types in summer

    参数 降水类型 本研究 延庆[23] 大兴[23] 滁州[37] 浦口[10]
    Dm/mm 对流降水 1.54 2.38 1.85 1.67 1.83
    层云降水 1.12 1.58 1.22 1.18 1.27
    lgNw/(m-3·mm-1) 对流降水 3.97 3.45 3.90 3.91 3.79
    层云降水 3.83 3.13 3.66 3.57 3.49
    DownLoad: Download CSV
  • [1]
    Mei H X, Guo W G, Zhou L Y, et al. Effect of shape parameter of raindrop spectrum on the simulation of Meiyu rainfall. Meteor Mon, 2017, 43(1): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201701004.htm
    [2]
    Edward A B, Kyoko I, Zhang G F, et al. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J Appl Meteor Climatol, 2006, 46(5): 634-650.
    [3]
    Shao Y T, Liu Q J, Jing Z J. Numerical simulation on macrophysics structure of the orographic cloud and precipation insummer of the Qilian Moutain. J Arid Meteor, 2013, 31(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201301004.htm
    [4]
    Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362. doi:  10.1007/s00376-018-8107-5
    [5]
    Wang M J, Zhao K, Xue M, et al. Precipitation microphysics characteristics of a Typhoon Matmo(2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res Atmos, 2016, 121(20): 12415-12433. doi:  10.1002/2016JD025307
    [6]
    Guan L, Dai J H, Tao L, et al. Application of QVP method to winter precipitation observation based on polarimetric radar. J Appl Meteor Sci, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108
    [7]
    Chen S J, Zheng J F, Yang J, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. doi:  10.11898/1001-7313.20220404
    [8]
    Song C, Zhou Y Q, Wu Z H, et al. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408
    [9]
    Cheng P, Chang Y, Liu Q, et al. A case study of raindrop size distribution and orographic impact characteristics in spring stratiform precipitation over the Qilian Mountains. Chinese J Atmos Sci, 2021, 45(6): 1232-1248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202106006.htm
    [10]
    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [11]
    Niu S J, An X L, Sang J R, et al. Observational research on physical feature of summer rain drop size distribution under synoptic systems in Ningxia. Plateau Meteor, 2002, 21(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200201006.htm
    [12]
    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [13]
    Jin Q, Yuan Y, Ji L, et al. Characteristic of raindrop size distribution for a squall line at Chuzhou of Anhui during summer. J Appl Meteor Sci, 2015, 26(2): 725-734. doi:  10.11898/1001-7313.20150609
    [14]
    Zhu H F, Wang D Y, Yang Z X, et al. Analysis of raindrop spectrum characteristics for a heavy rain event caused by Typhoon Haikui(No. 1211) in Anhui. Torrential Rain and Disasters, 2020, 39(2): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX202002008.htm
    [15]
    Mao Z Y, Fu D H, Huang Y B, et al. Peripheral cloud system structure and precipitation characteristics of Typhoon Bebinca(1816). J Appl Meteor Sci, 2022, 33(5): 604-616. doi:  10.11898/1001-7313.20220508
    [16]
    Li H, Su L J, Zheng X C, et al. Analysis on characteristics of particle size distribution during rain and snow processes in Hobhot. Meteor Mon, 2021, 47(1): 71-81. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202101007.htm
    [17]
    Huang Z W, Peng S Y, Zhang H R, et al. Characteristic of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207
    [18]
    Zwiebel J, Baelen J V, Anquetin S, et al. Impacts of orography and rain intensity on rainfall structure. The case of the HyMeX IOP7a event. Quart J Roy Meteor Soc, 2016, 142(Supple Ⅰ): 310-319. doi:  10.1002/qj.2679
    [19]
    Harikumar R. Orographic effect on tropical rain physics in the Asian monsoon region. Atmos Sci Lett, 2016, 17(10): 556-563. doi:  10.1002/asl.692
    [20]
    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [21]
    Li H, Yin Y, Shan Y P, et al. Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt Huangshan. Chinese J Atmos Sci, 2018, 42(2): 268-280. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201802003.htm
    [22]
    Liu C Z, Zhou Y J, Gu J, et al. Characteristics of raindrop size distribution in Chengdu. J Appl Meteor Sci, 2015, 26(1): 112-121. doi:  10.11898/1001-7313.20150112
    [23]
    Zhao C C, Zhang L J, Liang H H, et al. Microphypical characteristic of the raindrop size distribution between mountain and pain areas over Beijing in summer. Meteor Mon, 2021, 47(7): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107006.htm
    [24]
    Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributionsin thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203.
    [25]
    Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeorol, 2011, 12(3): 352-370.
    [26]
    Wang J, Wang W Q, Wang H, et al. Characteristics of the raindrop size distribution during a short-time heavy rainfall and a squall line accompanied by hail. Plateau Meteor, 2021, 40(5): 1071-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202105010.htm
    [27]
    Wang K F, Zhang H H, Zhang W, et al. The detection and elimination of abnormal data for the precipitation observed by Parsivel precipitation particle spectrometer. J Meteor Sci, 2011, 31(6): 732-736. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201106010.htm
    [28]
    Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi:  10.1029/RG011i001p00001
    [29]
    Zheng J H, Chen B J. Comparative study of exponential and Gamma functional fits to observed raindrop size distribution. J Meteor Sci, 2007, 27(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200701002.htm
    [30]
    Chen L, Chen B J, Yang J, et al. Characteristics of raindrop size distribution of rainstorm on Meiyu front during 2009-2010. Trans Atmos Sci, 2013, 36(4): 481-488. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201304011.htm
    [31]
    Ruan Z, Liu C Y, Ma J L, et al. Research of retrieving Gamma parameters in precipitation cloud from data obtained of vertical radar. Plateau Meteor, 2015, 34(4): 1019-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504013.htm
    [32]
    Li S S, Wang X F, Wan R, et al. The characteristics of raindrop spectrum in different altitude region on the eastern slope of Qinghai-Xizang Plateau. Plateau Meteor, 2020, 39(4): 899-911. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202005001.htm
    [33]
    Vivekanandan J, Zhang G F, Brandes E. Polarimetric radar estimators based on a constrained gamma drop size distribution model. J Climate Appl Meteor, 2004, 43(2): 217-230.
    [34]
    Ulbrich C W, Atlas D. Rainfall microphysics and radar propertise: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923.
    [35]
    Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365.
    [36]
    Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteorol Soc Japan, 2013, 91(2): 215-227.
    [37]
    Jin Q, Yuan Y, Liu H J, et al. Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer. Acta Meteor Sinica, 2015, 73(4): 778-788. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504013.htm
    [38]
    Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395.
    [39]
    Chu Y H, Su C L. An investigation of the slop-shape relation for gamma raindrop size distribution. J Climate Appl Meteor, 2008, 47(10): 2531-2544.
    [40]
    Zhang G F, Vivekanandan J, Brandes E A, et al. The shape slopes relation in observed gamma raindrop size distributions: Statistical error or useful information?. J Atmos Ocean Technol, 2003, 20(8): 1106-1119.
    [41]
    Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (481) PDF downloads(99) Cited by()
    • Received : 2023-02-07
    • Accepted : 2023-04-10
    • Published : 2023-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint