[1]
|
|
[2]
|
|
[3]
|
Wang B Z, Mo Y Q, Yang Y, et al. Modern Solar and Earth Radiation Measurements and Standards. Beijing: China Meteorological Press, 2018.
|
[4]
|
|
[5]
|
Li D P, Cheng X H, Sun Z A, et al. Radiative effects of aerosols in different region areas of Beijing. J Appl Meteor Sci, 2018, 29(5): 609-618. doi: 10.11898/1001-7313.20180509
|
[6]
|
|
[7]
|
China Meteorological Administration. Methods of Meteorological Radiation Observation. Beijing: China Meteorological Press, 2018.
|
[8]
|
Shi G Y, Hayasaka T, Ohmura A, et al. Data quality assessment and the long-term trend of ground solar radiation in China. J Appl Meteor Climatol, 2008, 47(4): 1006-1016. doi: 10.1175/2007JAMC1493.1
|
[9]
|
Iqbal M. An Introduction to Solar Radiation. Vol XVⅢ. Toronto: Academic Press, 1983.
|
[10]
|
Tooming H. Dependence of global radiation on cloudiness and surface albedo in Tartu, Estonia. Theor Appl Climatol, 2002, 72(1): 165-172. doi: 10.1007/s00704-002-0671-y
|
[11]
|
Wang D, Sheng L F, Shi G Y, et al. Comparison of surface solar radiation reanalysis data and observations over China. J Appl Meteor Sci, 2012, 23(6): 729-738. doi: 10.3969/j.issn.1001-7313.2012.06.010
|
[12]
|
Liu B, Ma L B, Rong X Y, et al. High-resolution model for seasonal prediction of surface shortwave radiation in China. J Appl Meteor Sci, 2022, 33(3): 341-352. doi: 10.11898/1001-7313.20220308
|
[13]
|
Yang Y, Quan J M, Ding L, et al. National solar radiation measurement standards and quality control. J Appl Meteor Sci, 2015, 26(1): 95-102. doi: 10.11898/1001-7313.20150110
|
[14]
|
Michel D, Philipona R, Ruckstuhl C, et al. Performance and uncertainty of CNR1 net radiometers during a one-year field comparison. J Atmos Oceanic Technol, 2008, 25(3): 442-451. doi: 10.1175/2007JTECHA973.1
|
[15]
|
Sanchez G, Cancillo M L, Serrano A. An intercomparison of the thermal offset for different pyranometers. J Geophys Res Atmos, 2016, 121: 7901-7912. doi: 10.1002/2016JD024815
|
[16]
|
Kipp Zonen Manual CMP CMA series Pyranometers albedometers V1610. pdf. [2022-09-07]. http://www.kippzonen.com.
|
[17]
|
Gubler S, Gruber S, Purves R S. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation. Atmos Chem Phys, 2012, 2(11): 5077-5098.
|
[18]
|
Liu M Q, Zhao C S, Zheng X D. Analysis of summer downward longwave radiation observation at 4 stations in Tibet. J Appl Meteor Sci, 2018, 29(5): 596-608. doi: 10.11898/1001-7313.20180508
|
[19]
|
Liu M Q, Zheng X D, Zhang J Q, et al. A revisiting of the parametrization of downward longwave radiation in summer over the Tibetan Plateau based on high-temporal-resolution measurements. Atmos Chem Phys, 2020, 20(11): 4415-4426.
|
[20]
|
Jiangsu Radio Science and Technology Research Institute Co., Ltd. FUSH-RS Radiation Observation Station User's Manual. Wuxi: Jiangsu Radio Science and Technology Research Institute Co., Ltd., 2015.
|
[21]
|
McArthur L J B. Baseline Surface Radiation Network(BSRN) Operations Manual Version 2.1. WCRP-121, WMO/TD-No. 1274, Geneva: WMO, 2005.
|
[22]
|
World Meteorological Organization(WMO). Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, Geneva: WMO, 1996.
|
[23]
|
|
[24]
|
|
[25]
|
|
[26]
|
|
[27]
|
Bush B C, Valero F P J, Simpson A S. Characterization of thermal effects in pyranometers: A data correction algorithm for improved measurement of surface insolation. J Atmos Oceanic Technol, 2000, 17: 165-175.
|
[28]
|
Haeffelin M, Kato S, Smith A M, et al. Determination of the thermal offset of the Eppley precision spectral pyranometer. Appl Opt, 2001, 4: 472-484.
|
[29]
|
Zhang Y, Seidel D J, Golaz J C, et al. Climatological characteristics of Arctic and Antarctic surface-based inversions. J Climate, 2011, 24: 5167-5186.
|
[30]
|
Nygärd T, Valkonen T, Vihma T. Antarctic low tropospheric humidity inversions: 10-yr Climatology. J Climate, 2013, 26: 5205-5219.
|
[31]
|
Vignon T, Traullé O, Berne A. On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica. Atmos Chem Phys, 2019, 19: 4659-4683.
|
[32]
|
|
[33]
|
Qiu J H, Xu X F, Yang J M. Accuracy evaluation of the observational data of the global solar radiation at 7 meteorological observatories including Beijing. J Appl Meteor Sci, 2008, 19(2): 287-296. http://qikan.camscma.cn/article/id/20080348
|
[34]
|
|
[35]
|
|
[36]
|
Zheng X D, Chen H X. Comparisons of solar ultraviolet irradiance measurements at Zhongshan Station, Antarctica. J Appl Meteor Sci, 2020, 31(4): 482-493. doi: 10.11898/1001-7313.20200410
|
[37]
|
Dutton E G, Michalsky J J, Stoffel T, et al. Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J Atmos Oceanic Technol, 2001, 18: 297-314.
|
[38]
|
Reda I, Hickey J, Long C, et al. Using a blackbody to calculate net longwave responsivity of shortwave solar pyranometers to correct for their thermal offset error during outdoor calibration using the component sum method. J Atmos Oceanic Technol, 2005, 22(10): 1531-1540.
|
[39]
|
Sanchez G, Serrano A, Cancillo M L. Effect of mechanical ventilation on the thermal offset of pyranometers during cloud-free summer conditions. J Atmos Oceanic Technol, 2017, 34(5): 1155-1173.
|
[40]
|
Serrano A, Sanchez G, Cancillo M L. Correcting daytime thermal offset in unventilated pyranometers. J Atmos Oceanic Technol, 2015, 32(11): 2088-2099.
|
[41]
|
Baumgartner D J, Pötzi W, Freislich H, et al. An automated method for the evaluation of the pointing accuracy of sun-tracking devices. Atmos Meas Technol, 2017, 10(3): 1181-1190.
|
[42]
|
Wang P, Knap W H, Kuipers P, et al. Clear-sky shortwave radiative closure for the Chabauw baseline surface radiation network site, Netherlands. J Geophys Res, 2009, 114: D14206. doi: 10.1029/2009JD011978
|