Ren Sanxue, Zhao Huarong, Zhou Guangsheng, et al. Response of winter wheat Tanmai 98 to sowing date adjustments. J Appl Meteor Sci, 2023, 34(3): 362-372. DOI:  10.11898/1001-7313.20230309.
Citation: Ren Sanxue, Zhao Huarong, Zhou Guangsheng, et al. Response of winter wheat Tanmai 98 to sowing date adjustments. J Appl Meteor Sci, 2023, 34(3): 362-372. DOI:  10.11898/1001-7313.20230309.

Response of Winter Wheat Tanmai 98 to Sowing Date Adjustments

DOI: 10.11898/1001-7313.20230309
  • Received Date: 2022-11-11
  • Rev Recd Date: 2023-02-21
  • Publish Date: 2023-05-31
  • Sowing date adjustments have been widely used for crop adaptation to climate change, but its impact on crop growth and development is still unclear. Based on field sowing date adjustment experiment of winter wheat Tanmai 98 in the northern part of North China Plain from 2017 to 2022, the responses of growth and development, yield formation and quality of Tanmai 98 are analyzed. The results show that delaying sowing date has no significant effect on the growth stage of overwintering stage and regreening stage of winter wheat. The total growth period is 256 days and 228 days for early sowing and late sowing based on the field experiment, and shortening 10 days to 8 days in turn, which is basically consistent with the interval of 10 d during sowing period. The shortening of whole growth period is mainly caused by the shortening of seedling growth period before overwintering. Late sowing date reduces effective panicles number and grain yield of Tanmai 98. The decrease rate of grain yield is 569.71 kg·hm-2·(10 d)-1 during the sowing date from 30 September to 30 October, but few significant effects are found on grain number and weight per spike. The delay of sowing date also affects the aboveground dry matter distribution of Tanmai 98 during maturity stage. The stem weight decreases with the delay of sowing date by 2.44%·(10 d)-1, but the spike of wheat increases by 2.44%·(10 d)-1. The harvest index increases with the delay of sowing date. The harvest index of S2, S3 and CK are all higher than 0.5000, while the harvest index of S1 is 0.4878. There is no significant effect on leaf photosynthetic characteristics and grain quality of Tanmai 98 by sowing date adjustments. Therefore, under the background of climate change, the winter wheat sowing date should be postponed in the northern part of the North China Plain from 1 October to 15 October. At the same time, the planting amount should be increased in steps, and basic seedlings should be increased, so as to offset the adverse effects of late sowing of wheat seedlings with fewer tillers and fewer panicle number, ensuring high yield. However, very late sowing date would still lead to yield reduction. The results provide information for the decision-making of winter wheat to climate change adaptation in the northern part of the North China Plain.
  • Fig. 1  Variation of grain(1000 seeds) filling of winter wheat Tanmai 98 staged sowing date experiment

    (a)annual grain dry matter accumulation during 2017-2022, (b)grain filling rate during 2019-2020, (c)grain filling rate during 2021-2022

    Table  1  Characteristics of key growth periods of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022

    发育期及发育阶段 CK S1 S2 S3
    出苗期 10-18 10-05 10-29 11-11
    分蘖期 11-12 10-27
    拔节期 次年04-04 次年04-04 次年04-06 次年04-10
    孕穗期 次年04-19 次年04-18 次年04-19 次年04-22
    抽穗期 次年04-28 次年04-27 次年04-28 次年04-30
    开花期 次年05-05 次年05-06 次年05-06 次年05-08
    成熟期 次年06-13 次年06-13 次年06-13 次年06-15
    生长季/d 246 256 236 228
    越冬前幼苗期/d 45 58 34 21
    营养生长期(返青后苗期)/d 48 48 49 52
    生殖生长期(孕穗-成熟)/d 55 56 55 54
    籽粒灌浆期(开花-成熟)/d 39 38 38 38
    DownLoad: Download CSV

    Table  2  Grain filling characteristics of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022

    处理 开花普期 灌浆开始测定日期 灌浆结束日期 灌浆持续日数/d 灌浆峰值日期 灌浆速率峰值/(g·(5 d)-1) 平均灌浆速率/(g·(5 d)-1)
    CK 05-05 05-15 06-13 29 05-30 11.560 6.577
    S1 05-06 05-16 06-14 29 05-30 11.080 6.479
    S2 05-06 05-16 06-15 30 05-30 11.020 6.688
    S3 05-08 05-18 06-17 30 05-29 11.390 6.349
    DownLoad: Download CSV

    Table  3  Grain filling characteristics of winter wheat Tanmai 98 under different sowing date experiments during 2019-2020 and 2021-2022

    年份 处理 开花普期 灌浆开始测定日期 灌浆结束日期 灌浆持续日数/d 灌浆峰值日期 灌浆速率峰值/(g·(5 d)-1) 平均灌浆速率/(g·(5 d)-1)
    2019—2020 CK 05-05 05-15 06-13 29 05-30 12.301 6.961
    S1 05-06 05-16 06-13 28 05-29 11.866 6.743
    S2 05-05 05-15 06-14 30 05-30 11.328 7.200
    S3 05-06 05-16 05-24 11.879 6.905
    2021—2022 CK 05-03 05-13 06-14 32 05-28 13.198 6.204
    S1 05-04 05-14 06-18 35 05-29 12.702 6.020
    S2 05-04 05-14 06-15 32 05-28 12.620 6.175
    S3 05-04 05-14 06-12 29 05-29 12.580 6.829
    DownLoad: Download CSV

    Table  4  Above-ground dry matter distribution rate during the harvest period of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022(unit: %)

    处理 茎秆 颖壳和穗轴 籽粒 穗部
    CK 36.52 12.70 50.78 63.48
    S1 38.61 12.33 49.07 61.39
    S2 33.04 13.59 53.37 66.96
    S3 31.64 14.60 53.77 68.36
    DownLoad: Download CSV

    Table  5  Average yield components of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2022

    处理 有效穗数 小穗数 不孕小穗数 穗粒数 穗粒重/g 籽粒重/g 千粒重/g 收获指数 理论产量/(kg·hm-2)
    CK 541.4 16.9 0.8 47.7 2.285 893.7 48.385 0.5055 8937.2
    S1 581.8 17.8 1.0 49.1 2.344 937.1 48.043 0.4878 9371.3
    S2 519.6 16.0 0.8 45.6 2.171 847.7 48.048 0.5299 8477.8
    S3 448.4 15.6 0.7 45.8 2.091 762.5 45.647 0.5381 7625.4
    DownLoad: Download CSV

    Table  6  Average leaf photosynthetic characteristics of winter wheat Tanmai 98 under different sowing date experiments from 2018 to 2022

    处理 净光合速率/(μmol·m-2·s-1) 蒸腾速率/(mol·m-2·s-1) 水分利用效率/(μmol·mmol-1)
    拔节期 抽穗期 乳熟期 平均 拔节期 抽穗期 乳熟期 平均 拔节期 抽穗期 乳熟期 平均
    CK 17.372 20.287 17.602 18.420 4.068 6.569 9.189 6.608 4.271 3.088 1.916 3.092
    S1 16.866 19.282 17.982 18.043 3.799 6.228 9.110 6.379 4.440 3.096 1.974 3.170
    S2 19.458 20.473 17.519 19.150 4.724 6.788 8.871 6.794 4.119 3.016 1.975 3.037
    S3 19.288 18.826 17.908 18.674 4.582 6.570 9.275 6.809 4.210 2.866 1.931 3.002
    DownLoad: Download CSV

    Table  7  Grain quality of winter wheat Tanmai 98 under different sowing date experiments from 2017 to 2021

    指标 CK S1 S2 S3 标准差
    苏氨酸/(g·kg-1) 3.18 3.21 3.13 3.04 0.08 必需
    缬氨酸/(g·kg-1) 4.79 4.93 4.74 4.70 0.10
    蛋氨酸/(g·kg-1) 1.46 1.35 1.30 1.28 0.08
    异亮氨酸/(g·kg-1) 4.11 4.30 4.11 4.11 0.09
    亮氨酸/(g·kg-1) 7.56 7.68 7.50 7.37 0.13
    苯丙氨酸(g·kg-1) 5.29 5.44 5.27 5.26 0.09
    赖氨酸/(g·kg-1) 3.79 4.04 4.09 3.92 0.14
    合计/(g·kg-1) 30.19 30.95 30.14 29.68 0.53
    组氨酸/(g·kg-1) 4.66 3.90 4.71 4.90 0.44 半必需
    精氨酸/(g·kg-1) 5.18 4.95 4.98 4.84 0.14
    合计/(g·kg-1) 9.84 8.85 9.69 9.74 0.46
    天冬氨酸/(g·kg-1) 10.80 10.68 10.70 9.88 0.43 非必需
    谷氨酸/(g·kg-1) 36.04 37.34 34.27 35.28 1.29
    胱氨酸/(g·kg-1) 3.55 3.62 3.43 2.90 0.33
    丝氨酸/(g·kg-1) 4.62 5.02 4.60 4.59 0.21
    甘氨酸/(g·kg-1) 4.72 4.80 4.81 4.65 0.08
    丙氨酸/(g·kg-1) 4.01 3.95 3.90 3.77 0.10
    脯氨酸/(g·kg-1) 14.73 14.81 14.48 15.26 0.32
    酪氨酸/(g·kg-1) 2.37 2.30 2.07 2.14 0.14
    蛋白质/(g·(100 g)-1) 13.08 13.03 12.43 12.95 0.30
    脂肪/(g·(100 g)-1) 1.20 1.18 1.23 1.20 0.02
    淀粉/(g·(100 g)-1) 54.95 55.03 55.73 55.63 0.40
    DownLoad: Download CSV
  • [1]
    Yang M Z, Pei Y S, Li X D. Study on grain self-sufficiency rate in China: An analysis of grain, cereal grain and edible grain. Journal of Natural Resources, 2019, 34(4): 881-889. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htm
    [2]
    Tian Z, Liu J Y, Cao M K. Simulation of the impact of climate change on Chinese wheat production in Huang-Huai-Hai Plain. Journal of Natural Resources, 2006, 21(4): 598-607. doi:  10.3321/j.issn:1000-3037.2006.04.013
    [3]
    Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203
    [4]
    Chen X L, Tan X Y, Li L N, et al. The association between high-yield and stable-yield characteristics of winter wheat and its influencing factors in the main producing areas in northern China. Journal of Natural Resources, 2022, 37(1): 263-276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202201018.htm
    [5]
    Shang Y, Huo Z G, Zhang L, et al. The influence of soil relative moisture on dry-hot wind disaster of winter wheat. J Appl Meteor Sci, 2019, 30(5): 598-607. doi:  10.11898/1001-7313.20190508
    [6]
    Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. doi:  10.11898/1001-7313.20200302
    [7]
    Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31(3): 280-289. doi:  10.11898/1001-7313.20200303
    [8]
    Chen Y, Ren G Y, Wang L, et al. Temporal change of warm winter events over the last 56 years in China. J Appl Meteor Sci, 2009, 20(5): 539-545. doi:  10.3969/j.issn.1001-7313.2009.05.004
    [9]
    Huang J Y, Hu Y Y. Trends of winter temperatures in China. Acta Meteor Sinica, 2006, 64(5): 614-621. doi:  10.3321/j.issn:0577-6619.2006.05.008
    [10]
    Li K N, Yang X G, Mu C Y, et al. The possible effects of global warming on cropping systems in China Ⅷ-The effects of climate change on planting boundaries of different winter-spring varieties of winter wheat in China. Scientia Agricultura Sinica, 2013, 46(8): 1583-1594. doi:  10.3864/j.issn.0578-1752.2013.08.007
    [11]
    Meng F Y, Feng L P, Zhang F Y, et al. Temporal and spatial variations of winter wheat freezing injury in northern winter wheat region. Acta Agronomica Sinica, 2019, 45(10): 1576-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201910013.htm
    [12]
    Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406
    [13]
    Zhou G S, Guo J P, Huo Z G, et al. China's Agriculture Responds to Climate Change. Beijing: China Meteorological Press, 2014.
    [14]
    Guo J P, et al. Assessment of the Impact of Climate Change on the Availability of Agricultural Climate Resources. Beijing: China Meteorological Press, 2016.
    [15]
    Qian F K, Wang W T, Liu Y H. Research of adaptive countermeasures of addressing climate change in agriculture field. China Population, Resources and Environment, 2014, 24(5): 19-24. doi:  10.3969/j.issn.1002-2104.2014.05.004
    [16]
    Xu L L, Lv H Q, Fang L. Effect of climate change on the climate suitability of summer maize on the Huang-Huai-Hai Plain. Resources Science, 2014, 36(4): 782-787. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201404014.htm
    [17]
    Ju H, Xu Y L, Xiong W. The impact of climate change on agriculture in China. Environ Protection, 2007(6A): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU200711020.htm
    [18]
    Zhou X B. Renewal and development of wheat varieties in Henan. Seed World, 2005(5): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZZ200505005.htm
    [19]
    Yun Y R, Fang X Q, Wang L Y, et al. Adaptive response of crop boundaries to climate warming in China. Crops, 2007(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ200703005.htm
    [20]
    Xu Z X, Su H B, Jiang X D, et al. Climate warming: Effects on the growth, yield and quality of winter wheat. Chinese Agricultural Science Bulletin, 2020, 36(25): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202025016.htm
    [21]
    Xie L Y, Li Y, Xu Y X, et al. Updated understanding on the impacts of climate change on food production and food security. Climate Change Research, 2014, 10(4): 235-239. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201404001.htm
    [22]
    Tan K Y, Zhou G S, Ren S X, et al. Climate change will probably not cause the decline of winter wheat nutritional quality in northern China. Climate Change Research, 2019, 15(3): 282-289. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201903007.htm
    [23]
    Wei S C, Li K W, Zhang J Q, et al. Hazard assessment of peanut drought and flood disasters in Huang-Huai-Hai Region. J Appl Meteor Sci, 2021, 32(5): 629-640. doi:  10.11898/1001-7313.20210510
    [24]
    Song Y L. Global research progress of drought indices. J Appl Meteor Sci, 2022, 33(5): 513-526. doi:  10.11898/1001-7313.20220501
    [25]
    Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi:  10.11898/1001-7313.20230101
    [26]
    Wang P J, Tang J X, Jin Z F, et al. Review on spring frost disaster for tea plant in China. J Appl Meteor Sci, 2021, 32(2): 129-145. doi:  10.11898/1001-7313.20210201
    [27]
    Qi Y Q, Sun H Y, Shen Y J. Characteristics and effects of climate warming on winter wheat/summer maize cropping system in recent 50 years in the piedmont of Mount Taihang. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1048-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201105010.htm
    [28]
    Bai F, Yang X G, Liu Z J, et al. Effects of sowing dates on grain yield of spring maize in the three-province of the Northeast China under climate change. Chinese Journal of Eco-Agriculture, 2020, 28(4): 480-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202004002.htm
    [29]
    Zhang J, Ma F G, Jiang M Y, et al. Effects of sowing date on growth, kernel filling and yield of summer maize. Shandong Agriculture Sciences, 2016, 48(8): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201608010.htm
    [30]
    Qian T F, Dong X C, Zhang X, et al. Effect of sowing date on dry matter accumulation, distribution and yield of winter wheat. Shandong Agriculture Sciences, 2019, 51(3): 24-28;35. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201903005.htm
    [31]
    Liu Z D, Xiao J F, Nan J Q, et al. Effect of sowing date on growth stages, morphological index and yield of summer maize. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201006021.htm
    [32]
    Zhang N, Du X, Jiang D L, et al. Effect of sowing date on growth and yield of summer corn(Zea mays. L). Journal of Agricultural University of Hebei, 2009, 32(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CULT200905003.htm
    [33]
    Li L W, Cui L N, Yang L J, et al. Effects of different sowing dates on grain yield and its components of summer maize. J Anhui Agri Sci, 2013, 41(18): 7786-7787. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201318020.htm
    [34]
    China Meteorological Administration. Code for Agricultural Meteorological Observation(Volume 1). Beijing: China Meteorological Press, 1993.
    [35]
    Guo J P. Advances in impacts of climate change on agricultural production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi:  10.11898/1001-7313.20150101
    [36]
    Zhu G X, Liu Z J, Qiao S L, et al. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 2022, 136: 126511.
    [37]
    Fu X L, Zhang H, Jia J Z, et al. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agronomica Sinica, 2009, 35(9): 1708-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200909020.htm
    [38]
    Wang F. Science Tells You that Climate Change is About Harvests. Chinese Science News, 2018-01-17.
    [39]
    Qin Z H, Tang H J, Li W J, et al. Progress and direction in studying the impacts of climate change on agriculture and grain production in China. Chinese Journal of Agricultural Resources and Region Planning, 2013, 34(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201305001.htm
    [40]
    Chen Q, Yu H, Hou W J, et al. Impacts of climate warming on growth development process and yield of winter wheat in Huang-Huai-Hai Region of China. Journal of Triticeae Crops, 2014, 34(10): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201410010.htm
    [41]
    Chen Y Y. The impact of climate change on China's grain production. Chinese Agricultural Science Bulletin, 2021, 37(12): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202112008.htm
    [42]
    Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi:  10.11898/1001-7313.20200509
    [43]
    Zhang L L, Zhang Z, Zhang J, et al. Response of rice phenology to climate warming weakened across China during 1981-2018: Did climatic or anthropogenic factors play a role?. Environmental Research Letters, 2022, 17(6): 064029.
    [44]
    Muleke A, Harrison M, Voil P D, et al. Earlier crop flowering caused by global warming alleviated by irrigation. Environmental Research Letters, 2022, 17(4): 044032.
    [45]
    Tao F L, Zhang L L, Zhang Z, et al. Climate warming outweighed agricultural managements in affecting wheat phenology across China during 1981-2018. Agricultural and Forest Meteorology, 2022, 316(1): 108865.
    [46]
    Xiao D P, Tao F L. Impact of climate change in 1981-2009 on winter wheat phenology in the North China Plain. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1539-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201211023.htm
    [47]
    Shang Y, Zhao H, Chai S X. Effects of climate change and cultivars change on winter wheat in semi-arid region of loess plateau in Northwest China. Agricultural Research in the Arid Areas, 2017, 35(5): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201705011.htm
    [48]
    Sun Q, Huang Y, Ji X J, et al. Characteristic of winter wheat cultivar shift in Henan Province under climate change. Climate Change Research, 2014, 10(4): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201404011.htm
    [49]
    Chu Z, Guo J P. Effects of climatic change on maize varieties distribution in the future of Northeast China. J Appl Meteor Sci, 2018, 29(2): 165-176. doi:  10.11898/1001-7313.20180204
    [50]
    Zhang T Y, He Y, DePauw R, et al. Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 2022, 13: 5591.
    [51]
    Tester R F, Morrison W R, Ellis R H, et al. Effects of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. Journal of Cereal Science, 1995, 22(1): 63-71.
    [52]
    Miao J L, Wang C Y, Guo T C, et al. Effects of post-anthesis interactions of high temperature and drought stresses on content and drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength. Journal of Triticeae Crops, 2008, 28(2): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW200802015.htm
    [53]
    Xiao G J, Zhang Q, Zhang F J, et al. Warming influences the yield and water use efficiency of winter wheat in the semiarid regions of Northwest China. Field Crops Research, 2016, 199: 129-135.
    [54]
    Tian Y L, Chen J, Deng A X, et al. Effects of asymmetric warming on contents and components of starch and protein in grains of winter wheat under FATI facility. Acta Agronomica Sinica, 2011, 37(2): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201102018.htm
  • 加载中
  • -->

Catalog

    Figures(1)  / Tables(7)

    Article views (572) PDF downloads(83) Cited by()
    • Received : 2022-11-11
    • Accepted : 2023-02-21
    • Published : 2023-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint