处理 | 果穗粗/cm | 果穗长/cm | 单株籽粒数 | 百粒重/g |
S1 | 5.1 | 20.0 | 622.5 | 34.467 |
S2 | 5.1 | 19.0 | 611.2 | 31.246 |
S3 | 5.1 | 18.9 | 623.5 | 29.940 |
S4 | 5.0 | 17.3 | 566.6 | 27.286 |
Citation: | Wang Junfang, Zhou Guangsheng, Song Yanling, et al. Effects of meteorological conditions on the yield of Lianyu No.1 maize. J Appl Meteor Sci, 2023, 34(3): 373-378. DOI: 10.11898/1001-7313.20230310. |
Table 1 Average components of maize yield under different sowing dates during 2018-2021
处理 | 果穗粗/cm | 果穗长/cm | 单株籽粒数 | 百粒重/g |
S1 | 5.1 | 20.0 | 622.5 | 34.467 |
S2 | 5.1 | 19.0 | 611.2 | 31.246 |
S3 | 5.1 | 18.9 | 623.5 | 29.940 |
S4 | 5.0 | 17.3 | 566.6 | 27.286 |
Table 2 Partial correlation coefficients of maize yield's components with meteorological factors at different growth stages during 2018-2021
发育阶段 | 产量构成要素 | 平均气温/℃ | 气温日较差/℃ | 有效积温/(℃·d) | 日照时数/h |
播种-出苗期 | 果穗粗 | -0.059 | 0.349* | 0.352* | -0.368* |
果穗长 | 0.368* | 0.022 | -0.270 | 0.133 | |
单株籽粒数 | 0.059 | 0.230 | -0.069 | 0.009 | |
百粒重 | -0.211 | 0.310 | -0.280 | -0.065 | |
出苗-拔节期 | 果穗粗 | -0.288 | -0.353* | 0.077 | 0.309 |
果穗长 | 0.466** | 0.361* | 0.313* | -0.214 | |
单株籽粒数 | -0.542** | 0.538** | 0.441** | -0.449** | |
百粒重 | -0.585** | 0.627** | 0.462** | -0.116 | |
拔节-抽雄期 | 果穗粗 | -0.179 | -0.132 | 0.473** | -0.381* |
果穗长 | 0.802** | 0.234 | 0.227 | -0.258 | |
单株籽粒数 | 0.130 | 0.702** | 0.290 | -0.651** | |
百粒重 | 0.287 | 0.705** | 0.682** | -0.739** | |
抽雄-乳熟期 | 果穗粗 | 0.001 | -0.012 | 0.287 | 0.007 |
果穗长 | 0.697** | 0.177 | 0.435** | -0.068 | |
单株籽粒数 | 0.681** | 0.434** | 0.523** | -0.561** | |
百粒重 | 0.811** | 0.688** | 0.828** | -0.690** | |
乳熟-成熟期 | 果穗粗 | -0.056 | -0.099 | 0.362* | 0.140 |
果穗长 | 0.521** | 0.794** | 0.434** | -0.625** | |
单株籽粒数 | 0.750** | 0.012 | 0.509** | 0.073 | |
百粒重 | 0.666** | 0.530** | 0.243 | -0.258 | |
播种-成熟期 | 果穗粗 | 0.198 | -0.352* | 0.398* | 0.288 |
果穗长 | 0.810** | 0.115 | 0.613** | 0.047 | |
单株籽粒数 | 0.578** | 0.643** | 0.730** | -0.653** | |
百粒重 | 0.747** | 0.633** | 0.886** | -0.514** | |
注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 |
Table 3 Maize yield per unit area under different sowing dates during 2018-2021(unit: t·hm-2)
处理 | 2018年 | 2019年 | 2020年 | 2021年 |
S1 | 13.556 | 13.632 | 14.827 | |
S2 | 14.972 | 11.347 | 11.817 | |
S3 | 9.819 | 12.415 | 11.571 | 11.066 |
S4 | 8.465 | 10.377 | 9.482 | 8.667 |
Table 4 Partial correlations of maize yield per unit area with meteorological factors at different growth stages during 2018-2021
发育阶段 | 平均气温/℃ | 气温日较差/℃ | 有效积温/(℃·d) | 日照时数/h |
播种-出苗期 | -0.112 | 0.343* | -0.212 | -0.081 |
出苗-拔节期 | -0.648** | 0.637** | 0.520** | -0.316* |
拔节-抽雄期 | 0.278 | 0.776** | 0.638** | -0.783** |
抽雄-乳熟期 | 0.807** | 0.618** | 0.761** | -0.662** |
乳熟-成熟期 | 0.724** | 0.384* | 0.363* | -0.145 |
播种-成熟期 | 0.737** | 0.738** | 0.898** | -0.691** |
注:*表示达到0.05显著性水平,**表示达到0.01显著性水平。 |
[1] |
Liu W, Song Y B. A daily meteorological impact index of maize yield based on weather elements. J Appl Meteor Sci, 2022, 33(3): 364-374. doi: 10.11898/1001-7313.20220310
|
[2] |
Fang Q, Zhang X, Chen S, et al. Selecting traits to reduce seasonal yield variation of summer maize in the North China Plain. Agronomy Journal, 2019, 111(1): 343-353. doi: 10.2134/agronj2018.05.0301
|
[3] |
Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. doi: 10.11898/1001-7313.20220407
|
[4] |
Cai F, Mi N, Ming H Q, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. doi: 10.11898/1001-7313.20210105
|
[5] |
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistic Press, 2020.
|
[6] |
Huang S B, Lv L H, Zhu J C, et al. Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain. Field Crops Research, 2018, 215: 66-73. doi: 10.1016/j.fcr.2017.09.015
|
[7] |
Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi: 10.11898/1001-7313.20230101
|
[8] |
Ma Q R, Zuo X, Hu C D, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. doi: 10.11898/1001-7313.20210409
|
[9] |
Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi: 10.11898/1001-7313.20220406
|
[10] |
Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210
|
[11] |
Xu F, Wang B, He C, et al. Optimizing sowing date and planting density can mitigate the impacts of future climate on maize yield: A case study in the Guanzhong Plain of China. Agronomy, 2021, 11(8): 1452-1470.
|
[12] |
Srivastava R, Panda R, Chakraborty A, et al. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Research, 2018, 221: 339-349.
|
[13] |
Maresma A, Ballesta A, Santiveri F, et al. Sowing date affects maize development and yield in irrigated Mediterranean environments. Agriculture, 2019, 9(3): 67-81.
|
[14] |
Lv Z F, Li F F, Lu G Q. Adjusting sowing date and cultivar shift improve maize adaption to climate change in China. Mitigation and Adaptation Strategies for Global Change, 2020, 25(1): 87-106.
|
[15] |
Gao Z, Feng H Y, Liang X G, et al. Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain. Agricultural and Forest Meteorology, 2021, 298/299: 108274.
|
[16] |
Bonea D. Phenology, yield and protein content of maize(Zea mays L.) hybrids as affected by different sowing dates. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 2020, 20(3): 145-150.
|
[17] |
Zhu G, Liu Z, Qiao S, et al. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 2022, 136: 126511.
|
[18] |
Zhai L, Zhang L, Yao H, et al. The optimal cultivar×sowing date×plant density for grain yield and resource use efficiency of summer maize in the northern Huang-Huai-Hai Plain of China. Agriculture, 2021, 12(1): 7.
|
[19] |
Zhou B, Yue Y, Sun X, et al. Maize kernel weight responses to sowing date-associated variation in weather conditions. The Crop Journal, 2017, 5(1): 43-51.
|
[20] |
Alam M J, Ahmed K S, Nahar M K, et al. Effect of different sowing dates on the performance of maize. Journal of Krishi Vigyan, 2020, 8(2): 75-81.
|
[21] |
Cao Q, Li G, Yang F, et al. Maize yield, biomass and grain quality traits responses to delayed sowing date and genotypes in rain-fed condition. Emirates Journal of Food and Agriculture, 2019, 31(6): 415-425.
|
[22] |
Feng X Y, Zhou G S. Modification of leaf water content for the photosynthetic and biochemical mechanism model of C4 plant. J Appl Meteor Sci, 2022, 33(3): 375-384. doi: 10.11898/1001-7313.20220311
|
[23] |
Bonelli L E, Monzon J P, Cerrudo A, et al. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research, 2016, 198: 215-225.
|
[24] |
Wang J X, Guo J P, Li R. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. doi: 10.11898/1001-7313.20190506
|
[25] |
Wang Y, Wang C, Zhang Q. Synergistic effects of climatic factors and drought on maize yield in the east of Northwest China against the background of climate change. Theoretical and Applied Climatology, 2021, 143(3): 1017-1033.
|
[26] |
Tian B, Zhu J, Nie Y, et al. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 2019, 205(1): 77-87.
|
[27] |
Guo C M, Ren J Q, Cao T H, et al. Effects of low temperature during ear differentiation stage on yield components of spring maize. J Appl Meteor Sci, 2018, 29(4): 505-512. doi: 10.11898/1001-7313.20180411
|
[28] |
Chen C, Pang Y. Response of maize yield to climate change in Sichuan Province, China. Global Ecology and Conservation, 2020, 22: e00893.
|