[1]
|
Thériault J M, Stewart R E, Henson W.On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J Appl Meteor Climatol, 2010, 49(7):1429-1442. doi: 10.1175/2010JAMC2321.1
|
[2]
|
|
[3]
|
|
[4]
|
Hart K A, Steenburgh W J, Onton D J, et al. An evaluation of mesoscale-model-based model output statistics(MOS) during the 2002 Olympic and Paralympic Winter Games. Wea Forecasting, 2004, 19(2): 200-218. doi: 10.1175/1520-0434(2004)019<0200:AEOMMO>2.0.CO;2
|
[5]
|
|
[6]
|
Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409
|
[7]
|
|
[8]
|
|
[9]
|
|
[10]
|
|
[11]
|
Luo J Y, Zhou J S, Yan Y C. Local temperature MOS forecast method based on numerical forecast products and superior guidance. Meteor Sci Technol, 2014, 42(3): 443-450. doi: 10.3969/j.issn.1671-6345.2014.03.015
|
[12]
|
Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103
|
[13]
|
|
[14]
|
Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205
|
[15]
|
|
[16]
|
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi: 10.11898/1001-7313.20220301
|
[17]
|
Feng H Z, Chen Y Y. A new method for non-linear classify and non-linear regression Ⅱ: Application of support vector machine to weather forecast. J Appl Meteor Sci, 2004, 15(3): 355-365. http://qikan.camscma.cn/article/id/20040345
|
[18]
|
Radhika Y, Shashi M. Atmospheric temperature prediction using support vector machines. Int J Comput Theor Eng, 2009, 1(1): 55-58.
|
[19]
|
Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304
|
[20]
|
Chen Y W, Huang X M, Li Y, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products. J Appl Meteor Sci, 2020, 31(4): 494-503. doi: 10.11898/1001-7313.20200411
|
[21]
|
|
[22]
|
Wang Z W, Zheng Z F, Chen M, et al. Prediction of meteorological elements based on nonlinear support vector machine regression method. J Appl Meteor Sci, 2012, 23(5): 562-570. http://qikan.camscma.cn/article/id/20120506
|
[23]
|
Li H C, Yu C, Xia J J, et al. A model output machine learning method for grid temperature forecasts in the Beijing Area. Adv Atmos Sci, 2019, 36(10): 1156-1170.
|
[24]
|
|
[25]
|
|
[26]
|
Chen Z S, Chen Y N, Xu J H, et al. Upper-air temperature change trends above arid region of Northwest China during 1960-2009. Theor Appl Climatol, 2015, 120: 239-248.
|
[27]
|
|
[28]
|
|
[29]
|
Pepin N, Benham D, Taylor K. Modeling lapse rates in the maritime uplands of Northern England: Implications for climate change. Arctic, Antarctic, and Alpine Research, 1999, 31(2): 151-164.
|
[30]
|
Burges J C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc, 1998, 2(2): 121-167.
|
[31]
|
Friedman J H. Greedy function approximation : A gradient boosting machine. The Annals of Statistics, 2001, 29(5): 1189-1232.
|