预报与订正结果 | 评价指标 | ||
偏差 | 平均绝对偏差 | 均方根误差 | |
CMA-GEPS控制预报产品 | 0.41 | 2.57 | 3.56 |
U-Net模型订正 | 0.51 | 2.40 | 3.16 |
U-Net残差连接模型订正 | 0.10 | 2.73 | 3.68 |
Citation: | Hu Yingying, Pang Lin, Wang Qiguang. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. DOI: 10.11898/1001-7313.20230404. |
Fig. 4 The same as in Fig. 3, but for root mean square error
the line denotes root mean square error reduction rate of U-Net model correction based on dataset Ⅱ relative to CMA-GEPS control forecast
Fig. 6 The same as in Fig. 5, but for 360 h lead time
Table 1 Evaluation indicaters of CMA-GEPS model control forecast of 2 m temperature for 240 h lead time and deep learning model correction based on dataset Ⅰ (unit:℃)
预报与订正结果 | 评价指标 | ||
偏差 | 平均绝对偏差 | 均方根误差 | |
CMA-GEPS控制预报产品 | 0.41 | 2.57 | 3.56 |
U-Net模型订正 | 0.51 | 2.40 | 3.16 |
U-Net残差连接模型订正 | 0.10 | 2.73 | 3.68 |
Table 2 The same as in Table 1, but based on dataset Ⅱ (unit:℃)
预报与订正结果 | 评价指标 | ||
偏差 | 平均绝对偏差 | 均方根误差 | |
CMA-GEPS控制预报产品 | 0.41 | 2.57 | 3.56 |
U-Net模型订正 | -0.21 | 1.67 | 2.29 |
U-Net残差连接模型订正 | -0.03 | 1.77 | 2.44 |
[1] |
Dai K, Cao Y, Qian Q F, et al. Situation and tendency of operation technologies in short-and medium-range weather forecast. Meteor Mon, 2016, 42(12): 1445-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612003.htm
|
[2] |
Li Z C, Bi B G, Jin R H, et al. The development and application of the modern weather forecast in China for the recent 10 years. Acta Meteor Sinica, 2014, 72(6): 1069-1078. doi: 10.3969/j.issn.1004-4965.2014.06.007
|
[3] |
Duan Y H, Jin R H. The status quo of modern weather operations in China and its future. Adv Meteor Sci Tech, 2012, 2(5): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205004.htm
|
[4] |
Shen X S, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003008.htm
|
[5] |
Chou J F. An innovative road to numerical weather prediction—From initial value problem to inverse problem. Acta Meteor Sinica, 2007, 65(5): 673-682. doi: 10.3321/j.issn:0577-6619.2007.05.003
|
[6] |
Zeng Q C. Weather forecast—From empirical to physicomathematical theory and super-computing system engineering. Physics, 2013, 42(5): 300-314. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201305001.htm
|
[7] |
Zhang D Q, Zheng Z H, Chen L J, et al. Advances on the predictability and prediction methods of 10-30 d extended range forecast. J Appl Meteor Sci, 2019, 30(4): 416-430. doi: 10.11898/1001-7313.20190403
|
[8] |
Kang Z M, Bao Y Y, Zhou N F. Current situation and development of medium-range and extended-range weather forecast in China. Adv Meteor Sci Tech, 2013, 3(1): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301008.htm
|
[9] |
Jin R H, Ma J, Ren H C, et al. Advances and development countermeasures of 10-30 days extended-range forecasting technology in China. Adv Earth Science, 2019, 34(8): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201908007.htm
|
[10] |
Shen X S, Chen Q Y, Sun J, et al. Development of operation global medium-range forecast system in National Meteorological Centre. Meteor Mon, 2021, 47(6): 645-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106001.htm
|
[11] |
Wu M L, Lu Z Y, Wang Y. The Method for Mid-range Forecast in Future 8-17 Days//Proceedings of the 2006 Annual Conference of the Chinese Meteorological Society on Mesoscale Weather Dynamics, Numerical Simulation and Prediction, 2006: 929-935.
|
[12] |
Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101
|
[13] |
Yin S, Li Y, Ma J, et al. Preliminary study on bias correction for the extended-range temperature forecast. Meteor Mon, 2020, 46(3): 412-419. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202003012.htm
|
[14] |
Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction. Nature, 2015, 525(7567): 47-55.
|
[15] |
Lorenz E N. Deterministic nonperiodic flow. J Atmos Sci, 1963, 20(2): 130-141.
|
[16] |
Zhao S R, Zhao C G, Zhao R X, et al. The development of objective meteorological element forecast in China. Adv Meteor Sci Tech, 2012, 2(5): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201205005.htm
|
[17] |
Ji L R, Chen J B, Zhang D M, et al. Review of some numerical aspects of the dynamic framework of NWP model. Chinese J Atmos Sci, 2005, 29(1): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501013.htm
|
[18] |
Huang J Y. Meteorological Statistical Analysis and Forecasting Methods. Beijing: China Meteorological Press, 1990.
|
[19] |
Shi N. Meteorological Statistical Forecasting. Beijing: China Meteorological Press, 2009.
|
[20] |
Shi J E, Qu D G, Sun S Z, et al. Studies on long-range forecasting by statistical methods: Part Ⅰ—Application of stepwise multiple regression technique. Acta Meteor Sinica, 1964, 34(4): 507-518. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404010.htm
|
[21] |
Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi: 10.11898/1001-7313.20200103
|
[22] |
Klein W H, Lewis B M, Enger I. Objective prediction of five-day mean temperatures during winter. J Meteor, 1959, 16(6): 672-682.
|
[23] |
Glahn H R, Lowry D A. The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteor, 1972, 11(8): 1203-1211.
|
[24] |
Ding S S. The advance of model output statistics method in China. Acta Meteor Sinica, 1985, 43(3): 332-338. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198503008.htm
|
[25] |
Chen Y Y, Chen X G, Ma J R, et al. A study on subtle MOS forecasting method of wind. Sci Meteor Sinica, 2006, 26(2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200602013.htm
|
[26] |
Luo J Y, Zhou J S, Yan Y C. Local temperature MOS forecast method based on numerical forecast products and superior guidance. Meteor Sci Technol, 2014, 42(3): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201403016.htm
|
[27] |
Tong H, Guo P W, Zhu Y J, et al. Bias correction and statistical downscaling meteorological parameters forecast technique based on large-scale numerical model products. Meteor Mon, 2014, 40(1): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201401008.htm
|
[28] |
Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[29] |
Xu X F. From physical model to intelligent analysis: A new exploration to reduce the uncertainty of weather forecast. Meteor Mon, 2018, 44(3): 341-350. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201803001.htm
|
[30] |
Ma L M. Development of artificial intelligence technology in weather forecast. Adv Earth Science, 2020, 35(6): 551-560. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202006001.htm
|
[31] |
Han L, Chen M X, Chen K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts. Adv Atmos Sci, 2021, 38(9): 1444-1459.
|
[32] |
Zhang Y B, Chen M X, Han L, et al. Multi-element deep learning fusion correction method for numerical weather prediction. Acta Meteor Sinica, 2022, 80(1): 153-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201011.htm
|
[33] |
Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409
|
[34] |
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi: 10.11898/1001-7313.20220301
|
[35] |
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. doi: 10.11898/1001-7313.20220506
|
[36] |
Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi: 10.11898/1001-7313.20210506
|
[37] |
Chen Y Y, Yu X D, Gao X H, et al. A new method for non-linear classify and non-linear regression Ⅰ: Introduction to support vector machine. J Appl Meteor Sci, 2004, 15(3): 345-354. http://qikan.camscma.cn/article/id/20040344
|
[38] |
Feng H Z, Chen Y Y. A new method for non-linear classify and non-linear regression Ⅱ: Application of support vector machine to weather forecast. J Appl Meteor Sci, 2004, 15(3): 355-365. http://qikan.camscma.cn/article/id/20040345
|
[39] |
Zhang Y B, Song L Y, Chen M X, et al. A study of error correction for high-resolution gridded forecast based on a convolutional neural network in the Beijing-Tianjing-Hebei Region. Trans Atmos Sci, 2022, 45(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202206005.htm
|
[40] |
Chen Y W, Huang X M, Li Y, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products. J Appl Meteor Sci, 2020, 31(4): 494-503. doi: 10.11898/1001-7313.20200411
|
[41] |
Jin R H, Dai K, Zhao R X, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm
|
[42] |
Richardson D, Buizza R, Hagedom R. First Workshop on the THORPEX Interactive Grand Global Ensemble(TIGGE). WMO/TD-No. 1273, WWRP/THORPEX-No. 05, 2005.
|
[43] |
Li J C. Study on Runoff Forecasting of Honganjian River Basin Based on TIGGE Data. Zhengzhou: North China University of Water and Electric Power, 2019.
|
[44] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention(MICCAI), 2015, 9351: 234-241.
|