Wang Zhenchao, Chen Xuejiao, Liu Shu, et al. Comparison experiment for rainfall observation of micro-smart weather stations. J Appl Meteor Sci, 2023, 34(4): 438-450. DOI:  10.11898/1001-7313.20230405.
Citation: Wang Zhenchao, Chen Xuejiao, Liu Shu, et al. Comparison experiment for rainfall observation of micro-smart weather stations. J Appl Meteor Sci, 2023, 34(4): 438-450. DOI:  10.11898/1001-7313.20230405.

Comparison Experiment for Rainfall Observation of Micro-smart Weather Stations

DOI: 10.11898/1001-7313.20230405
  • Received Date: 2023-02-24
  • Rev Recd Date: 2023-05-15
  • Publish Date: 2023-07-31
  • In order to enhance the understanding of rainfall observation performance of micro-smart (integrated) weather stations and to promote the application in rainfall observation operations, a comparative experiment for the rainfall observation of radar, photoelectric, piezoelectric and tipping bucket micro-smart weather stations is carried out by Hebei Xiong'an New Area Meteorological Service from June to November in 2021. The rainfall observation capability of micro-smart weather stations with different rainfall observation principles are analyzed in terms of total rainfall, rainfall intensity, percentage of rainfall intensity and temporal characteristics. It shows that when the accumulated precipitation exceeds 10 mm, the precipitation measured by the tipping bucket micro-smart weather station can meet observation error control requirements compared with the precipitation observed by the standard station, while results of the radar micro-smart weather station are large and results of the photoelectric and piezoelectric micro-smart weather stations are small. When the cumulative precipitation is less than 10 mm, results of the tipping bucket and piezoelectric micro-smart weather stations can meet observation error control requirements, while results of radar micro-smart weather stations are large and results of photoelectric micro-smart weather stations are small. In terms of rainfall intensity, the double tipping bucket station is suitable for monitoring rainfall extreme, while photovoltaic and piezoelectric stations underestimate the extreme. Radar-based micro-smart weather stations can be calibrated and revised for rainfall extreme monitoring by adjusting internal parameters. Analysis of different rainfall intensities and their corresponding rainfall ratios show that the rain intensity corresponding to a rain intensity accumulation ratio greater than 95% at each micro-smart weather station is[0.3 mm·min-1, 0.6 mm·min-1] and the rain intensity corresponding to a rainfall accumulation ratio greater than 50% is[0.1 mm·min-1, 0.4 mm·min-1]. It shows that within 0.4 mm·min-1, the proportion of rainfall measured by any type of rain sensor accounts for more than half of the total rainfall, so more attention should be paid to accuracy for small rain intensity in the operational rain sensor rate determination. As the resolving capacity increases, the tipping bucket type micro-smart weather station becomes less sensitive to the starting time and will identify the ending time earlier. The radar type micro-smart weather station responds to rainfall relatively more quickly. Finer resolving capacity of the rain sensor will enhance the monitoring effectiveness of fine rainfall and the effective rainfall rate.
  • Fig. 1  Schematic layout of comparison experiment for micro-smart weather stations

    Fig. 2  Box plots of relative error for process precipitation of micro-smart weather stations

    (upper and lower boundaries of the box denote 75 and 25 percentiles, top and bottom ends of the whiskers denote the maximum and minimum, the black horizontal line inside the box denotes the median, green diamonds denote the mean, blue dashed lines denote ±4% of bias)

    Fig. 3  Scatter plot of maximum rainfall bias at different duration

    Fig. 4  Proportion and accumulated proportion of rainfall intensity measured by standard station and micro-smart weather stations

    Fig. 5  Contribution and accumulated proportion of rainfall intensity to rainfall measured by standard station and micro-smart weather stations

    Table  1  Basic information of micro-smart stations

    微智站编号 分辨力/(mm·min-1) 雨强/(mm·min-1) 传感器类型 承水口(翻斗) 直径/mm 设备型号
    C00 0.1 电阻感雨 HY-SKY3
    C01 0.01 0~24 雷达式 ZY3140
    C02 0.01 0~24 雷达式 CY-YTJ-S06
    C03 0.1 0~4 单翻斗 159 jy-wx-qx
    C04 0.01 0~24 雷达式 WS60
    C05 0.01 0~4 光电式 P-IIS-MWS
    C06 0.1 0.1~4 压电式 DZZ4-XVSA
    C07 0.2 0~4 双翻斗式 200 SAMS-Ⅱ
    C08 0.01 0~24 雷达式 Theaty-Ⅱ
    C09 0.2 0~4 双翻斗式 200 SAMS
    C10 0.01 0~24 雷达式 ZQX-36
    C11 0.01 0~24 雷达式 SW600
    DownLoad: Download CSV

    Table  2  Rainfall events from 15 Jun to 15 Oct in 2021 (unit:mm)

    起止时间 C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 标准站
    07-01T18:01—21:00 14.2 24.4 2.6 7.2 16.8 21.5 18.2 17.5
    07-02T23:01—03T20:00 46.3 53.9 4.4 17.9 38.4 49.6 47.2 39.2
    07-10T23:01—12T07:00 101.7 87.9 173.2 18.3 41.9 112.4 142.2 124.9 32.3 111.7
    07-18T09:01—19:00 20.6 20.3 18.2 27.7 1.4 8.2 18.6 15.5 21.8 24.5 7.0 18.6
    07-21T10:01—22T06:00 19.1 16.7 12.1 15.3 0.3 5.8 15.0 12.4 17.2 20.3 5.9 13.9
    07-27T15:01—30T09:00 46.8 35.8 5.8 13.7 42.6 43.8 52.7 13.2 37.0
    08-04T03:01—07:00 11.9 9.9 17.0 0.8 5.2 12.2 9.0 15.6 15.3 4.2 11.9
    08-05T12:01—14:00 21.4 14.3 24.2 8.2 7.1 17.8 13.6 21.4 22.5 6.4 18.5
    08-09T00:01—03:00 3.2 0.0 2.2 0.0 1.6 1.4 2.0 1.6 3.5 1.5 1.2
    08-14T06:01—08:00 7.9 30.0 8.2 0.0 3.1 5.6 5.0 6.8 9.9 3.1 5.7
    08-16T03:01—17T02:00 2.5 0.0 0.0 0.3 0.0 0.3 1.6 1.6 2.2 2.6 0.9 1.3
    08-19T06:01—20:00 19.9 30.0 17.6 0.0 5.9 19.7 23.3 5.6 23.1
    08-23T19:00—24T02:00 29.8 54.5 45.3 5.2 12.7 32.0 23.7 31.6 38.6 11.6 32.9
    08-26T20:01—21:00 0.7 0.0 0.4 0.0 0.3 0.2 0.5 0.2 0.8 0.5 0.2
    08-31T02:01—09:00 4.7 0.9 0.0 0.0 2.0 2.2 2.0 5.9 1.3 1.7
    09-04T01:01—06T11:00 10.5 10.8 3.5 0.5 0.0 12.0 8.9 11.6 11.7 2.5 10.6
    09-16T08:01—17T00:00 4.5 6.8 0.2 0.5 0.3 0.5 1.6 1.4 1.4 2.1 0.3 1.2
    09-18T19:01—20T11:00 51.0 117.8 40.6 47.1 25.9 21.7 67.4 66.6 58.9 9.5 65.3
    09-23T22:01—24T22:00 16.1 12.7 10.9 1.2 5.9 11.8 10.7 11.8 17.0 6.1 11.1
    09-25T22:01—27T06:00 5.8 14.8 1.0 1.5 0.5 14.4 3.6 13.8 6.7 1.1 12.9
    10-03T10:01—07T05:00 131.9 109.5 2.4 69.8 103.8 103.0 104.4 44.0 104.2
    10-08T21:01—09T21:00 13.1 14.0 4.6 0.1 3.7 13.8 9.8 13.4 4.0 12.9
    DownLoad: Download CSV

    Table  3  Maximum rainfall of standard and micro-smart weather stations at different duration (unit:mm)

    测站 时长
    1 min 5 min 10 min 30 min 60 min
    标准站 2.4 9.8 19.5 44.1 50.2
    C01 1.3 7.9 16.5 39.6 49.6
    C02 3.5 12.6 29.9 65.1 70.1
    C03 2.2 7.6 14.6 34.8 38.0
    C04 3.7 14.1 27.8 68.0 76.8
    C05 0.6 2.0 3.5 8.9 10.7
    C06 0.3 2.7 4.2 11.5 15.1
    C07 2.4 8.8 17.4 41.2 47.4
    C08 0.4 1.8 0.0 8.1 9.2
    C09 3.3 11.7 23.4 55.0 63.2
    C10 1.7 7.8 17.7 42.1 50.9
    C11 0.6 2.1 4.2 11.1 14.5
    DownLoad: Download CSV

    Table  4  Differences in rainfall time parameters between standard station and micro-smart weather stations

    测站 开始时间/min 结束时间/min a/%
    标准站 0 0 21.7
    C01 -141.4 2.6 22.3
    C02 -139.8 173.8 37.3
    C03 -111.0 151.1 18.8
    C04 98.1 -214.7 34.0
    C05 279.0 -221.2 31.6
    C06 50.8 -190.1 23.3
    C07 60.7 -62.1 17.9
    C08 -87.1 2.5 18.6
    C09 19.8 -28.9 19.7
    C10 -103.0 -4.5 25.6
    C11 -1.4 -16.5 9.2
    DownLoad: Download CSV
  • [1]
    Singh C V.Relationships between rainy days, mean daily intensity and seasonal rainfall in normal, flood and drought years over India.Adv Atmos Sci, 1998, 15(3):424-432. doi:  10.1007/s00376-998-0012-x
    [2]
    Chen Y L, Zhao L N, Wang Y, et al. Review on forecast methods of rainfall-induced geo-hazards. J Appl Meteor Sci, 2019, 30(2): 142-153. doi:  10.11898/1001-7313.20190202
    [3]
    Uijlenhoet R. Precipitation physics and rainfall observation. Climate and the Hydrological Cycle, 2008, 25(4): 59-97.
    [4]
    Ren Z H, Feng M N, Zhang H Z, et al. The difference and relativity between rainfall by automatic recording and manual observation. J Appl Meteor Sci, 2007, 18(3): 358-364. doi:  10.3969/j.issn.1001-7313.2007.03.012
    [5]
    Li L, Fan X B, Cui W, et al. Comparative analysis of precipitation between weighing gauge and manual gauge. J Appl Meteor Sci, 2015, 26(6): 688-694. doi:  10.11898/1001-7313.20150605
    [6]
    Pendergrass A G. What precipitation is extreme?. Science, 2018, 360(6393): 1072-1073. doi:  10.1126/science.aat1871
    [7]
    Salzmann M. Global warming without global mean precipitation increase?. Science Advances, 2016, 2(6): 150-157.
    [8]
    Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 1998, 39(4): 667-694. doi:  10.1023/A:1005319109110
    [9]
    Chen L X, Shao Y N, Zhang Q F, et al. Preliminary analysis of climatic change during the last 39 years in China. J Appl Meteor Sci, 1991, 2(2): 164-174. http://qikan.camscma.cn/article/id/19910215
    [10]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [11]
    Chen L X, Zhu W Q, Wang W, et al. Studies on climate change in China in recent 45 years. Acta Meteor Sinica, 1998, 56(3): 257-271. doi:  10.3321/j.issn:0577-6619.1998.03.001
    [12]
    Jin R H, Dai K, Zhao R X, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteor Mon, 2019, 45(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904001.htm
    [13]
    Bi B G, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. J Appl Meteor Sci, 2016, 27(5): 534-549. doi:  10.11898/1001-7313.20160503
    [14]
    Wei Q, Li W, Peng S, et al. Development and application of national verification system in CMA. J Appl Meteor Sci, 2019, 30(2): 245-256. doi:  10.11898/1001-7313.20190211
    [15]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [16]
    Fan W J, Cheng C Y, Yu D L, et al. Overview of Domestic and International Miniature Meteorological Intelligent Observation Devices//Proceedings of the 34th Annual Meeting of the Chinese Meteorological Society Intelligent Meteorological Observations, 2017: 12-13.
    [17]
    Wang Z, Zhou Y, Tang W, et al. Analysis of the impact of miniaturization and intelligent development of meteorological detection equipment on traditional meteorological operations. China Informatization, 2018, 4(3): 67-71. doi:  10.3969/j.issn.1672-5158.2018.03.030
    [18]
    Chen Y Y. Research and prospect of smart meteorological services. Digital Communication World, 2019, 9(6): 56-58. doi:  10.3969/J.ISSN.1672-7274.2019.06.035
    [19]
    Hu X H, Li C, Liu D Y, et al. Comparative analysis of observation data from smart weather stations and automatic weather stations. Meteorological, Hydrological and Marine Instruments, 2016, 33(1): 57-60. doi:  10.3969/j.issn.1006-009X.2016.01.011
    [20]
    Wu Y H, Zhang J, Tian M Q, et al. A comparative analysis of temperature observations from a miniature weather station(OITS-03). Collection, 2019, 22(7): 80-81. https://www.cnki.com.cn/Article/CJFDTOTAL-LVKJ201922014.htm
    [21]
    Lu J L, Huang X X, Gu T F, et al. Comparative analysis and evaluation of experimental data from miniature automatic weather stations in smart cities. Meteorological, Hydrological and Marine Instruments, 2022, 39(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW202201008.htm
    [22]
    Atlas D, Ulbrich C W. Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J Appl Meteor, 1977, 16(12): 1322-1331.
    [23]
    Brandes E A, Zhang G, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J Appl Meteor, 2002, 41(6): 674-685.
    [24]
    Guan L, Dai J H, Tao L, et al. Application of QVP method to winter precipitation observation based on polarimetric radar. J Appl Meteor Sci, 2021, 32(1): 91-101. doi:  10.11898/1001-7313.20210108
    [25]
    Ilyas M A, Swingler J. Piezoelectric energy harvesting from raindrop impacts. Energy, 2015, 90(8): 796-806.
    [26]
    Safaei M, Sodano H A, Anton S R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later(2008-2018). Smart Mater Struct, 2019, 28(11): 113001.
    [27]
    Tokay A, Kruger A, Krajewski W F. Comparison of drop size distribution measurements by impact and optical disdrometers. J Appl Meteor, 2001, 40(11): 2083-2097.
    [28]
    Bhattacharyya S, Dan M, Sen A K. Modelling of drop size distribution of rain from rain rate and attenuation measurements at millimeter and optical wavelengths. International Journal of Infrared & Millimeter Waves, 2000, 21(12): 2065-2075.
    [29]
    Meng Q Y, Li D. Component improvement and maintenance method of SL3-1 rainfall sensor. Meteor Sci Technol, 2014, 42(4): 597-600. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404012.htm
    [30]
    Zhang Q, Tu M H, Ma S Q, et al. Quality assessment of the observational data of automatic precipitation stations in China. J Appl Meteor Sci, 2007, 18(3): 365-372. http://qikan.camscma.cn/article/id/20070359
    [31]
    Bonta J V, Shahalam A. Cumulative storm rainfall distributions: Comparison of Huff curves. Journal of Hydrology(New Zealand), 2003, 16(2): 65-74.
    [32]
    Yarnell D L. Rainfall intensity-frequency data. US Department of Agriculture, 1944, 204(9): 58-59.
    [33]
    Yin S Q, Wang Y, Xie Y, et al. Characteristics of intra-storm temporal pattern over China. Adv Water Sci, 2014, 25(5): 617-624. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201405001.htm
    [34]
    Guo Q Y, Sha W Y. Analysis of precipitation variability during the pre-flood period in South China. J Appl Meteor Sci, 1998, 30(4): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.001.htm
    [35]
    Li Y, Jin R H, Zhou N F, et al. An analysis on characteristics of heavy rainfall processes during the Meiyu season in Jianghuai Region. Acta Meteor Sinica, 2017, 75(5): 717-728. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705003.htm
    [36]
    Zhao L N, Mu X X, Ma C P, et al. A review on stable precipitation type forecast in winter. J Appl Meteor Sci, 2021, 32(1): 12-24. doi:  10.11898/1001-7313.20210102
    [37]
    Wang W P, Yang X Q, Zhang Z Q, et al. The climatic characteristics and trends of rainy days over China. J Meteor Sci, 2017, 37(3): 317-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201703004.htm
    [38]
    Bonta J V. Development and utility of Huff curves for disaggregating precipitation amounts. Applied Engineering in Agriculture, 2004, 20(5): 641.
    [39]
    Wu H Y, Zou Y, Liu W. Quantitative assessment of regional heavy rainfall process in Guangdong and its climatological characteristics. J Appl Meteor Sci, 2019, 30(2): 233-244. doi:  10.11898/1001-7313.20190210
    [40]
    Liao A M, Liu J F, Zhang J Y, et al. Analysis of rainfall characteristics based on multiple types of rain gauges. Adv Water Sci, 2020, 31(6): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202006005.htm
    [41]
    Sheng Z P, Bai Y S, Lin Z H. Quantitative relationships for error rates. J Metrology, 1996, 17(3): 203-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB199603008.htm
    [42]
    Jia P Q. Comparison between observational data and grid data of precipitation for the last one hundred years in China. J Appl Meteor Sci, 1999, 10(2): 181-189. http://qikan.camscma.cn/article/id/19990257
    [43]
    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [44]
    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [45]
    China Meteorological Administration. Standard for Ground-Based Meteorological Observations. Beijing: China Meteorological Press, 2003.
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (632) PDF downloads(91) Cited by()
    • Received : 2023-02-24
    • Accepted : 2023-05-15
    • Published : 2023-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint