[1]
|
Musgrave K D, Taft R K, Vigh J L, et al. Time evolution of the intensity and size of tropical cyclones. J Adv Model Earth Syst, 2012, 4(3): M08001.
|
[2]
|
|
[3]
|
|
[4]
|
Hu B H, Tan Y K, Wang J. Calculation of maximum wind velocity radius of tropical cyclone on sea surface. J Appl Meteor Sci, 2004, 15(4): 427-435. doi: 10.3969/j.issn.1001-7313.2004.04.005
|
[5]
|
Kong L S, Zhang X Z. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. doi: 10.11898/1001-7313.20220105
|
[6]
|
|
[7]
|
DeMaria M, Knaff J A, Sampson C R. Evaluation of long-term trend in tropical cyclone intensity forecasts. Meteor Atmos Phys, 2007, 97: 19-28. doi: 10.1007/s00703-006-0241-4
|
[8]
|
Feng J N, Duan Y H, Xu J, et al. Improving the simulation of Typhoon Mujigae(2015) based on radar data assimilation. J Appl Meteor Sci, 2017, 28(4): 399-413. doi: 10.11898/1001-7313.20170402
|
[9]
|
Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602
|
[10]
|
Shi L J, Xu X F, Li B, et al. Application of Doppler radar data to the landfalling Typhoon Saomai simulation. J Appl Meteor Sci, 2009, 20(3): 257-266. doi: 10.3969/j.issn.1001-7313.2009.03.001
|
[11]
|
|
[12]
|
Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301
|
[13]
|
|
[14]
|
Pendergrass A G, Willoughby H E. Diabatically induced secondary flows in tropical cyclones. Part Ⅰ: Quasi-steady forcing. Mon Wea Rev, 2009, 137: 805-821. doi: 10.1175/2008MWR2657.1
|
[15]
|
Vigh J L, Schubert W H. Rapid development of the tropical cyclone warm core. J Atmos Sci, 2009, 66: 3335-3350. doi: 10.1175/2009JAS3092.1
|
[16]
|
Xu J, Wang Y. Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon Wea Rev, 2010, 138: 4135-4157. doi: 10.1175/2010MWR3335.1
|
[17]
|
Cocks S B, Gray W M. Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon Wea Rev, 2002, 130(8): 1989-2005. doi: 10.1175/1520-0493(2002)130<1989:VOTOWP>2.0.CO;2
|
[18]
|
Hill K A, Lackmann G M. Influence of environmental humidity on tropical cyclone size. Mon Wea Rev, 2009, 137: 3294-3315. doi: 10.1175/2009MWR2679.1
|
[19]
|
Carr L E, Elsberry R L. Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon Wea Rev, 1997, 125(12): 3190-3209. doi: 10.1175/1520-0493(1997)125<3190:MOTCWD>2.0.CO;2
|
[20]
|
Lu X, Yu H, Lei X. Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor Sinica, 2011, 25: 104-112. doi: 10.1007/s13351-011-0008-9
|
[21]
|
Evans C, Hart R E. Analysis of the wind field evolution associated with the extratropical transition of Bonnie(1998). Mon Wea Rev, 2008, 136(6): 2047-2065. doi: 10.1175/2007MWR2051.1
|
[22]
|
Chan K T F, Chan J C L. Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon Wea Rev, 2013, 141: 3985-4007. doi: 10.1175/MWR-D-12-00204.1
|
[23]
|
|
[24]
|
He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|
[25]
|
Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104
|
[26]
|
Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. doi: 10.11898/1001-7313.20210303
|
[27]
|
Ooyama K. Numerical simulation of the life cycle of tropical cyclones. J Atmos Sci, 1969, 26: 3-40.
|
[28]
|
Riehl H. Tropical Meteorology. New York: McGraw Hill Book, 1954: 1-392.
|
[29]
|
Wang S, Toumi R. A historical analysis of the mature stage of tropical cyclones. Int J Climatol, 2018, 38: 2490-2505.
|
[30]
|
Kaplan J, DeMaria M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea Forecasting, 2003, 18: 1093-1108.
|
[31]
|
Powell M D, Reinhold T A. Tropical cyclone destructive potential by integrated kinetic energy. Bull Amer Meteor Soc, 2007, 88(4): 513-526.
|
[32]
|
Chan J C L, Williams R T. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part Ⅰ: Zero mean flow. J Atmos Sci, 1987, 44: 1257-1265.
|
[33]
|
|
[34]
|
Moyer A C, Evans J L, Powell M. Comparison of observed gale radius statistics. Meteor Atmos Phys, 2007, 97: 41-55.
|
[35]
|
Xu J, Wang Y. Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea Forecasting, 2018, 33(2): 523-537.
|
[36]
|
Chen K, Chen G, Rao C, et al. Relationship of tropical cyclone size change rate with size and intensity over the western North Pacific. Atmos Ocean Sci Lett, 2021, 14(3): 100040.
|
[37]
|
Knaff J A, Sampson C R, Chirokova G. A global statistical-dynamical tropical cyclone wind radii forecast scheme. Wea Forecasting, 2017, 32(2): 629-644.
|