Wang Jun, Zheng Lina, Wang Hong, et al. Statistical characteristics and regional differences of raindrop size distribution during 6 typhoon rainstorms in Shandong. J Appl Meteor Sci, 2023, 34(4): 475-488. DOI:  10.11898/1001-7313.20230408.
Citation: Wang Jun, Zheng Lina, Wang Hong, et al. Statistical characteristics and regional differences of raindrop size distribution during 6 typhoon rainstorms in Shandong. J Appl Meteor Sci, 2023, 34(4): 475-488. DOI:  10.11898/1001-7313.20230408.

Statistical Characteristics and Regional Differences of Raindrop Size Distribution During 6 Typhoon Rainstorms in Shandong

DOI: 10.11898/1001-7313.20230408
  • Received Date: 2023-02-26
  • Rev Recd Date: 2023-06-05
  • Publish Date: 2023-07-31
  • Based on disdrometers, Doppler radar products and conventional meteorological observation, precipitation characteristics of typhoon rainstorms affecting Shandong from 2018 to 2021 are explored, and evolution characteristics of raindrop size distribution and integral parameters of typhoon raindrops are analyzed. lgNw-Dm distribution shows that microphysical characteristics of different typhoons are different when entering Shandong. Ampil(1810), Rumbia(1818), Bavi(2008) and In-Fa(2106) are more maritime-like, while Yagi(1814) and Lekima(1909) are more continental-like. Microphysical characteristics of these typhoons are quite different after passing different distance and affected by the environment. Microphysical characteristics of Ampil and Bavi at two observation sites in north and south Shandong are similar, and rain drop size distribution (DSD) characteristics of their convective precipitation are maritime. Microphysical characteristics of Yagi are more continental when it enters Shandong. After moving northward, its DSD changes into a typical continental convective precipitation in northwest Shandong. DSD characteristics of Rumbia convective precipitation in Feicheng, Shandong Province are maritime, and change to continental near Guangrao under the influence of cold air, and then changes to maritime type over Laiyang after moving eastward. Microphysical characteristics of convective precipitation change several times. DSD characteristics of convective precipitation before Lekima denaturation are continental type (Lanling and Gaotang), while the spectral characteristics of convective precipitation DSD change to maritime (Linqu and Zhangqiu) during and after denaturation. In the process of In-Fa moving northward, the precipitation weakens obviously, and the microphysical characteristics of convective precipitation change significantly, from maritime in the south to continental in the north. The statistical relationships of various parameters between continental and maritime convective precipitation are different. The μ-λ statistical relation of the quadratic polynomial show that continental (maritime) precipitation generally has smaller (larger) constant terms except for Capricorn Texas, during which continental (maritime) precipitation generally has a slightly larger (slightly smaller) primary term and a smaller (larger) secondary term. However, Z-R relationship is complicated, and there are no significant differences between continental and maritime convective precipitation processes. Large index b is more likely to appear in continental precipitation processes, while small index b is more likely to appear in maritime precipitation processes. In addition, the proportion of equilibrium DSD is low, which can appear in both maritime and continental convective precipitation process, while the transition DSD with high proportion is more in continental convective precipitation processes.
  • Fig. 1  Locations of Doppler weather radars (black hollow triangles), precipitation phenomenon instruments (black solid dots) and typhoon tracks

    Fig. 2  Average raindrop size distributions(N(D)) of different rain rate (R, unit: mm·h-1) categories for typical stations

    Fig. 3  Average lgNw-Dm for typical stations

    (green rectangles denote maritime and continental convective clusters, the black dashed line denotes the average stratiform precipitation)

    Fig. 4  Coefficient A and index b of Z-R relationship for stratiform and convective precipitation for typical stations

    Fig. 5  Fitting curves of μ-λ polynomial relation for typical stations

    Fig. 6  Equilibrium raindrop size distribution of different rain rates

    Table  1  Sample number of seven rain rate (R, unit: mm·h-1) categories for typical stations

    台风 代表站 0.5<R≤2 2<R≤5 5<R≤10 10<R≤20 20<R≤50 50<R≤100 100<R≤200
    安比 五莲 394 257 196 126 100 4 0
    滨州 233 270 131 70 34 0 0
    摩羯 台儿庄 444 299 160 142 90 45 5
    诸城 179 128 81 53 32 9 13
    德州 79 147 84 107 98 68 1
    温比亚 广饶 343 185 128 107 186 89 0
    莱阳 165 223 151 88 61 40 5
    利奇马 兰陵 295 243 259 234 144 25 0
    临朐 535 421 179 230 446 88 2
    章丘 1007 1136 816 707 145 0 0
    高唐 683 286 95 55 72 69 9
    巴威 诸城 176 160 109 113 136 46 0
    平度 134 166 170 128 86 8 0
    烟花 台儿庄 622 437 330 205 128 15 1
    平原 374 293 200 101 39 1 0
    DownLoad: Download CSV

    Table  2  Percentage of raindrop size based on different maximum slopes (HS, unit: m-3·mm-2) for typical stations (unit: %)

    台风 代表站 HS>0.0 -0.5<HS≤0.0 -1.0<HS≤-0.5 -1.5<HS≤-1.0 -2.0<HS≤-1.5 HS≤-2.0
    安比 五莲 3.9 38.0 43.2 11.7 2.9 0.3
    滨州 8.8 50.5 35.3 4.9 0.5 0.0
    摩羯 台儿庄 2.4 22.8 67.3 7.5 0.0 0.0
    诸城 29.3 44.8 23.6 2.3 0.0 0.0
    德州 2.0 77.8 19.9 0.3 0.0 0.0
    温比亚 广饶 6.7 75.3 17.8 0.2 0.0 0.0
    莱阳 3.3 45.1 45.4 5.9 0.3 0.0
    利奇马 兰陵 4.1 52.8 37.6 5.1 0.4 0.0
    临朐 0.8 54.6 41.6 2.9 0.1 0.0
    章丘 7.8 36.5 43.6 11.7 0.5 0.0
    高唐 15.6 62.7 20.3 1.5 0.0 0.0
    巴威 诸城 10.3 49.1 37.1 3.2 0.3 0.0
    平度 7.1 35.6 47.2 10.2 0.0 0.0
    烟花 台儿庄 4.9 26.2 56.6 11.0 1.2 0.0
    平原 9.2 51.8 35.1 3.6 0.3 0.0
    DownLoad: Download CSV
  • [1]
    Tokay A, Bashor P G, Habib E, et al. Raindrop size distribution measurements in tropical cyclones. Mon Wea Rev, 2008, 136: 1669-1685. doi:  10.1175/2007MWR2122.1
    [2]
    Deo A, Walsh K J E. Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmos Res, 2006, 181: 81-94.
    [3]
    Chang W Y, Wang T C, Lin P L. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems inthe western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J Atmos Oceanic Technol, 2009, 26: 1973-1993. doi:  10.1175/2009JTECHA1236.1
    [4]
    Wen L, Zhao K, Chen G, et al. Drop size distribution characteristics of seven typhoons in China. J Geophys Res Atmos, 2018, 123: 6529-6548. doi:  10.1029/2017JD027950
    [5]
    Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarizedradar analysis. J Atmos Sci, 2003, 60: 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [6]
    Lyu T. Observational Study of the Characteristics of Raindrop Size Distribution of Landfalling Typhons. Nanjing: Nanjing University, 2018.
    [7]
    Chen B J, Wang Y, Ming J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot(2009). J Trop Meteor, 2012, 18: 162-171.
    [8]
    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [9]
    Bao X, Wu L, Zhang S, et al. Distinct raindrop size distributions of convective inner- and outer- rainband rain in Typhoon Maria(2018). J Geophys Res Atmos, 2020, 125(14): e2020JD032482.
    [10]
    Bao X, Wu L, Zhang S, et al. A comparison of convective raindrop size distributions in the eyewall and spiral rainbands of Typhoon Lekima(2019). Geophys Res Lett, 2020, 47(23): e2020GL090729.
    [11]
    Mao Z Y, Fu D H, Huang Y B, et al. Peripheral cloud system structure and precipitation characteristics of Typhoon Bebinca(1816). J Appl Meteor Sci, 2022, 33(5): 604-616. doi:  10.11898/1001-7313.20220508
    [12]
    Feng L, Hu S, Liu X, et al. Precipitation microphysical characteristics of Typhoon Mangkhut in southern China using 2D video disdrometers. Atmosphere, 2020, 11(9). DOI:  10.3390/atmos11090975.
    [13]
    Feng W Y, Shi L J, Wang Z M, et al. Application of raindrop disdrometer data in rainfall estimation of Typhoon Rumbia. Meteor Mon, 2021, 47(4): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202104001.htm
    [14]
    Wang J, Cong C H, Wang H, et al. Evolution characteristics of raindrop size distribution of landfalling Typhoon Rumbia (2018). Meteor Mon, 2022, 48(11): 1449-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202211008.htm
    [15]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [16]
    Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi:  10.11898/1001-7313.20220408
    [17]
    Chen H, Yang X J, Yi X Y, et al. Analysis of difference in distribution of rainstorms in the later two stages of northward-moving Typhoon Ampil. Plateau Meteor, 2021, 40(5): 1087-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202105011.htm
    [18]
    Li R F, Guo W H, Cong C H, et al. Cause analysis of the precipitation difference between Typhoon "Yagi" and "Rumbia" passing through southwest of Shandong Province with similar tracks. Marine Forecasts, 2022, 39(2): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202202005.htm
    [19]
    Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi:  10.11898/1001-7313.20220104
    [20]
    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [21]
    Liu T, Duan Y H, Feng J N, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. doi:  10.11898/1001-7313.20210303
    [22]
    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [23]
    Zheng L N, Wang Y, Zhang Z H. Causual ananlysis of extra torrential rain of Typhoon Lekima in Shandong in 2019. Meteor Sci Technol, 2021, 49(3): 437-445. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202103017.htm
    [24]
    Cao X G, Wang H, Fu J, et al. Analyses of features of coastal northbound tropical cyclones and the impact on coastal East China. J Trop Meteor, 2014, 30(5): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201405006.htm
    [25]
    Cong C H, Wu W, Sun S S. Characteristics of tropical cyclones influencing Shandong Province from 1949 to 2012. Meteor Environ Sci, 2016, 32(5): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201605010.htm
    [26]
    Tang F, Chen F J, Zhuge X Y, et al. Analysis of influence process of Typhoon In-fa(202106) based on satellite remote sensing data. Trans Atmos Sci, 2021, 44(5): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202105008.htm
    [27]
    Wang H P, Dong L, Xu Y L, et al. Analysis on main characteristics of Typhoon In-fa and difficulties in its track forecast. J Marine Meteor, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htm
    [28]
    Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeor, 2011, 12: 352-370.
    [29]
    Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775.
    [30]
    Ulbrich C W, Atlas D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923.
    [31]
    McFarquhar G M. A new representation of collision-induced breakup of raindropsand its implications for the shapes of raindrop size distributions. J Atmos Sci, 2004, 61(7): 777-794.
    [32]
    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [33]
    Bringi V N, Williams C R, Thurai M, et al. Using dual-polarizedradar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. J Atmos Ocean Technol, 2009, 26: 2107-2122.
    [34]
    Wilson J W, Brandes E A. Radar measurement of rainfall-A summary. Bull Amer Meteor Soc, 1979, 60(9): 1048-1060.
    [35]
    Rosenfeld D, Ulbrich C W. Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteorological Monographs, 2003, 30(52): 237-258.
    [36]
    Uijlenhoet R, Smith J A, Steiner M. The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J Atmos Sci, 2003, 60: 1220-1238.
    [37]
    Steiner M, Smith J A, Uijlenhoet R. A microphysical interpretation of radar reflectivity-rain rate relationships. J Atmos Sci, 2004, 61: 1114-1131.
    [38]
    Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395.
    [39]
    Atlas D, Ulbrich C W, Marks F D, et al. Systematic variation of drop size and radar-rainfall relations. J Geophys Res Atmos, 1999, 104(D6): 6155-6169.
    [40]
    Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information. J Atmos Ocean Technol, 2003, 20(8): 1106-1119.
    [41]
    Zhang S, Bao X, Wu L, et al. Dual-polarization radar retrieval during Typhoon Lekima(2019): Seeking the best-fitting shape-slope relationship depending on the differential-horizontal reflectivity relationship. Atmos Res, 2022, 267(1). DOI:  10.1016/j.atmosres.2021.105978.
    [42]
    Wen L, Zhao K, Zhang G, et al. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-yu season in East China. J Atmos Oceanic Technol, 2017, 34(5): 1021-1037.
    [43]
    D'Adderio L P, Porcù F, Tokay A. Identification and analysis of collisional break-up in natural rain. J Atmos Sci, 2015, 72(9): 3404-3416.
    [44]
    D'Adderio L P, Porcù F, Tokay A. Evolution of drop size distribution in natural rain. Atmos Res, 2018, 200(1): 70-76.
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (636) PDF downloads(112) Cited by()
    • Received : 2023-02-26
    • Accepted : 2023-06-05
    • Published : 2023-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint