Ge Lili, Lü Guozhen, Zhao Guixiang, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. DOI:  10.11898/1001-7313.20230409.
Citation: Ge Lili, Lü Guozhen, Zhao Guixiang, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. DOI:  10.11898/1001-7313.20230409.

Seasonal Distribution Characteristics of Raindrop Spectrum in Taiyuan

DOI: 10.11898/1001-7313.20230409
  • Received Date: 2023-05-11
  • Rev Recd Date: 2023-06-21
  • Publish Date: 2023-07-31
  • The raindrop size distribution (RSD) and parameter characteristics of different climate regions, rain types, topographies or weather systems have been extensively studied focusing on summer precipitation. However, even microphysical characteristics of precipitation in the same region can show significant seasonal differences. Seasonal distribution characteristics of RSD with different rain rates and rainfall types in Taiyuan are investigated and compared with conclusions from other regions based on observations of precipitation phenomenometer from December 2017 to November 2022. It can provide references for localized application of the parameterization of rainfall microphysics in numerical weather and climate prediction models, the rainfall kinetic energy flux estimation and the radar quantitative precipitation estimation. In addition, satellite measurements, ground observations, and reanalysis data are applied to explain the possible mechanism of seasonal differences in RSD. The RSD presents a unimodal structure with a peak of 0.562 mm and the decrease trend of concentration is more obvious in winter. Small raindrops with diameter less than 1.0 mm contribute more than 80% of the total number concentration, while the rain rate (R) is contributed primarily from mid-size raindrops with diameter of 1-2 mm during all seasons. The rainfall with R < 1 mm·h-1 are most frequent in different seasons, but the rainfall with R ≥ 5 mm·h-1 is predominant in summer. For the RSD of different rain rate, the highest (lowest) concentration of large (small) raindrops in winter is observed from the first two rain rate classes, while the concentration is higher in summer when the rain rate exceeds 5 mm·h-1. Rainfall at Taiyuan is dominated by stratiform rain throughout the year, lgNw or Dm has minor seasonal differences, and the distribution of lgNw and Dm is more similar to Nanjing. The convective rain occurs most often during summer and is close to the maritime-like cluster, the convective rain during spring and autumn is neither continental nor maritime, and there is no convective rain in winter. The stratiform rain has a wider spectrum width and higher concentration compared with the convective rain. μ-λ, Et-R, Ed-Dm, and Z-R relationships are derived by the least square method for different seasons. μ-λ relationships change little with seasons, but vary significantly compared with Florida in America. The power function and the binomial function has better fitting performance for Et-R and Ed-Dm, respectively. There is an inverse relationship between the coefficient and the exponent of the Z-R relationships. For stratiform rain, the classical relationship overestimates rainfall in spring and autumn, while the classical relationship turns from overestimated to underestimated as the rain rate increases. For convective rain, the classical relationship overestimates rainfall slightly in summer and autumn.
  • Fig. 1  Averaged raindrop size distributions in four seasons

    Fig. 2  Box plots for microphysical parameters in four seasons

    (the circle and the dashed line of each box denote the average value and median value, bottom and top edges of the box denote the 25th and 75th percentiles, bottom and top of solid vertical lines denote the 5th and 95th percentiles, similarily hereinafter)

    Fig. 3  Contribution of raindrops in different diameter classes to NT and R in four seasons

    Fig. 4  Averaged raindrop size distributions for different rain rate classes in four seasons

    Fig. 5  Averaged raindrop size distributions of stratiform rain and convective rain in four seasons

    Fig. 6  Distribution of lgNw-Dm

    (the black for winter, the red for spring, the blue for summer, the green for autumn; error bars denote standard deviations of lgNw and Dm, the dashed line denotes the separation of stratiform rain and convective rain, two black rectangles denote maritime and continental types of convection from Reference [3])

    Fig. 7  Scatter plot of μ versus λ and fitting curves

    (the red for spring, the blue for summer, the green for autumn)

    Fig. 8  Scatter plots of Et versus R, Ed versus Dm and fitting curves in four seasons

    Fig. 9  Scatter plots of Z versus R and fitting curves for stratiform rain and convective rain in four seasons

    Fig. 10  Diagram of average heights of the lifting condensation level, 0℃ isotherm and cloud-top height(a), box plots of surface wind speed(b), total column water vapor(c) and convective available potential energy(d)

    Table  1  Averaged microphysical parameters for different rain rate classes in four seasons

    季节 雨强分档/(mm·h-1) 样本量 R/(mm·h-1) NT/m-3 Z/(mm6·m-3) W/(g·m-3) Dm/mm lgNw/(m-3·mm-1) μ λ/mm-1
    冬季 0<R<1 1023 0.442 144.50 120.07 0.037 1.002 3.446 9.81 15.52
    1≤R<2 163 1.323 304.01 541.17 0.099 1.194 3.611 2.91 6.13
    春季 0<R<1 10310 0.422 169.36 93.52 0.038 0.940 3.561 13.77 21.47
    1≤R<2 3149 1.402 321.22 477.76 0.107 1.154 3.716 6.87 10.31
    2≤R<5 2376 2.994 440.07 1596.31 0.201 1.352 3.718 4.87 7.35
    5≤R<10 452 6.636 556.70 5384.95 0.387 1.626 3.685 3.74 5.27
    10≤R<20 49 12.930 521.23 18667.33 0.627 2.106 3.456 3.68 3.89
    R≥20 10 34.894 466.51 98166.33 1.357 2.846 3.237 5.32 3.47
    夏季 0<R<1 19052 0.410 141.79 105.13 0.034 1.018 3.390 15.62 22.68
    1≤R<2 6058 1.427 332.88 504.61 0.106 1.188 3.681 9.67 13.52
    2≤R<5 5452 3.103 476.39 1469.11 0.209 1.331 3.767 6.99 9.49
    5≤R<10 1591 6.812 612.67 4583.83 0.405 1.551 3.795 5.74 6.92
    10≤R<20 680 13.788 723.87 13666.96 0.731 1.806 3.786 5.20 5.43
    R≥20 422 34.786 1044.34 62804.02 1.579 2.262 3.692 3.42 3.47
    秋季 0<R<1 14000 0.411 190.42 89.57 0.038 0.926 3.597 14.98 23.90
    1≤R<2 5593 1.464 331.53 500.80 0.111 1.167 3.707 6.48 9.85
    2≤R<5 5228 3.081 423.67 1593.01 0.203 1.364 3.695 4.52 6.76
    5≤R<10 1489 6.753 529.69 5501.84 0.385 1.649 3.655 3.72 5.05
    10≤R<20 318 12.954 637.32 14019.31 0.664 1.893 3.646 3.74 4.32
    R≥20 58 31.770 916.56 68359.38 1.381 2.421 3.547 2.82 2.98
    DownLoad: Download CSV

    Table  2  Averaged microphysical parameters for different rain types in four seasons

    降水类型 季节 NT/m-3 R/(mm·h-1) W/(g·m-3) Z/(mm6·m-3) Dm/mm lgNw/(m-3·mm-1) μ λ/mm-1
    层状云降水 冬季 221.63 0.804 0.064 259.93 1.056 3.544 7.30 12.00
    春季 283.39 1.265 0.094 528.90 1.064 3.701 9.12 14.45
    夏季 287.47 1.366 0.098 533.67 1.123 3.616 10.41 15.28
    秋季 309.62 1.548 0.110 726.34 1.113 3.699 8.53 13.73
    对流云降水 春季 675.07 8.773 0.492 9679.98 1.747 3.671 2.29 4.04
    夏季 892.78 20.731 1.029 24640.75 1.800 3.876 4.58 5.14
    秋季 659.03 12.540 0.647 12771.84 1.787 3.701 3.42 4.35
    DownLoad: Download CSV
  • [1]
    Morrison H, Lier-Walqui M, Fridlind A M, et al. Confronting the challenge of modeling cloud and precipitation microphysics. J Adv Model Earth Sy, 2020, 12(8). DOI:  10.1029/2019MS001689.
    [2]
    Chen S J, Zheng J F, Yang J, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. doi:  10.11898/1001-7313.20220404
    [3]
    Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [4]
    Suh S H, Kim H J, Lee D I, et al. Geographical characteristics of raindrop size distribution in the southern parts of south Korea. J Appl Meteor Climatol, 2021, 60(2): 157-169. doi:  10.1175/JAMC-D-20-0102.1
    [5]
    Chen L, Chen B J, Yang J, et al. Characteristics of raindrop size distribution of rainstorm on Meiyu front during 2009-2010. Trans Atmos Sci, 2013, 36(4): 481-488. doi:  10.3969/j.issn.1674-7097.2013.04.011
    [6]
    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [7]
    Zhao C C, Zhang L J, Liang H H, et al. Microphypical characteristic of the raindrop size distribution between mountain and pain areas over Beijing in summer. Meteor Mon, 2021, 47(7): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202107006.htm
    [8]
    Zeng Y, Yang L M, Zhou Y S, et al. Characteristics of orographic raindrop size distribution in the Tianshan Mountains, China. Atmos Res, 2022, 278. DOI:  10.1016/J.ATMOSRES.2022.106332.
    [9]
    Li R, Wang G L, Zhou R R, et al. Seasonal variation in microphysical characteristics of precipitation at the entrance of water vapor channel in Yarlung Zangbo Grand Canyon. Remote Sens, 2022, 14(13): 3149-3170. doi:  10.3390/rs14133149
    [10]
    Huang Z W, Peng S Y, Zhang H R, et al. Characteristic of raindrop size distribution at Anxi Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207
    [11]
    Luo L, Guo J, Chen H N, et al. Microphysical characteristics of rainfall observed by a 2DVD disdrometer during different seasons in Beijing, China. Remote Sens, 2021, 13(12). DOI:  10.3390/RS13122303.
    [12]
    Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362. doi:  10.1007/s00376-018-8107-5
    [13]
    Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307
    [14]
    Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi:  10.1029/RG011i001p00001
    [15]
    Chen Z J, Hu X F, Chen B J, et al. Raindrop size distribution of rainstom in central-southern Hebei Province. J Arid Meteor, 2019, 37(4): 586-596. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201904008.htm
    [16]
    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [17]
    Jin Q, Yuan Y, Ji L, et al. Characteristic of raindrop size distribution for a squall line at Chuzhou of Anhui during summer. J Appl Meteor Sci, 2015, 26(6): 725-734. doi:  10.11898/1001-7313.20150609
    [18]
    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [19]
    Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J Meteor Soc Japan Ser Ⅱ, 2013, 91(2): 215-227.
    [20]
    Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775.
    [21]
    Zheng J H, Chen B J. Comparative study of exponential and Gamma functional fits to observed raindrop size distribution. J Meteor Sci, 2007, 27(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200701002.htm
    [22]
    Pu J P, Zhang W, Jiang A J, et al. Characteristics of Gamma raindrop size distribution based on the precipitation particle spectrometer. J Meteor Sci, 2010, 30(5): 701-707. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201005017.htm
    [23]
    Kinnell P I A. Rainfall intensity-kinetic energy relationships for soil loss prediction 1. Soil Sci Soc Am J, 1981, 45(1): 153-155.
    [24]
    Seela B K, Janapati J, Lin P L, et al. A comparison study of summer season raindrop size distribution between Palau and Taiwan, two islands in Western Pacific. J Geophys Res Atmos, 2017, 122(21): 11787-11805.
    [25]
    Zeng Q W, Zhang Y, Lei H C, et al. Microphysical characteristics of precipitation during pre-monsoon, monsoon, and post-monsoon periods over the South China Sea. Adv Atmos Sci, 2019, 36(10): 1103-1120.
    [26]
    Zeng Y, Yang L M, Tong Z P, et al. Statistical characteristics of raindrop size distribution duringrainy seasons in Northwest China. Adv Meteorol, 2021. DOI:  10.1155/2021/6667786.
    [27]
    Chen B J, Hu Z Q, Liu L P, et al. Raindrop size distribution measurements at 4500 m on the Tibetan Plateau during TIPEX-Ⅲ. J Geophys Res Atmos, 2017, 122(20): 11092-11106.
    [28]
    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [29]
    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [30]
    Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed Gamma raindrop size distributions: Statistical error or useful information?. J Atmos Ocean Technol, 2003, 20(8): 1106-1119.
    [31]
    Seela B K, Janapati J, Lin P L, et al. Raindrop size distribution characteristics of the western Pacific tropical cyclones measured in the Palau islands. Remote Sens, 2022, 14(3). DOI:  10.3390/rs14030470.
    [32]
    Janapati J, Seela B K, Lin P L, et al. Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the Northwestern Pacific. Hydro Earth Syst Sci, 2021, 25: 4025-4040.
    [33]
    Wang X Y, Ruan Z, Li X D, et al. Comparison of the reflectivities of wind profile radar and raindrop disdrometer. Meteor Mon, 2016, 42(1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601013.htm
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(2)

    Article views (489) PDF downloads(107) Cited by()
    • Received : 2023-05-11
    • Accepted : 2023-06-21
    • Published : 2023-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint