Citation: | Li Ruijie, Huang Mengyu, Ding Deping, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. DOI: 10.11898/1001-7313.20230503. |
Table 1 List of successfully operated cloud chambers
Table 2 Performance indices of BACIC
指标 | 参数 |
形状 | 圆柱形 |
材料 | 316L型不锈钢 |
体积 | 70 m3 |
表面积 | 118.4 m2 |
直径 | 2.6 m |
高度 | 14 m |
温度范围 | -45℃至室温 |
压力范围 | 1 hPa~常压 |
成云方式 | 膨胀成云 |
洁净度 | 小于10 cm-3 |
Table 3 Simulated rising speed corresponding to depressurization rates
减压速度/(hPa·min-1) | 上升速度/(m·s-1) |
84 | 14.30 |
54 | 9.13 |
36 | 6.28 |
12 | 2.09 |
[1] |
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[2] |
Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi: 10.11898/1001-7313.20210604
|
[3] |
Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202
|
[4] |
Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi: 10.11898/1001-7313.20210608
|
[5] |
Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1149-1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
|
[6] |
Koo C C, Chen Y J, Xu N Z, et al. Preliminary Analysis of the Physical Observations of Cloud, Fog and Precipitation in Hengshan Mountain from March to August in 1960)//Physical Characteristics of Cloud, Fog and Precipitation in China. Beijing: Science Press, 1962: 2-21.
|
[7] |
Zhan L S. The Summarize of the Observation of Big Size Cloud Droplets at Hengshan Mountain from October to May in 1961//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 47-50.
|
[8] |
Zhan L S, Chen W K, Huang M Y. The Preliminary Analysis of the Observation of Fluctuation of Cloud Size Distribution at Hengshan and Taishan Mountain//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 30-40.
|
[9] |
Koo C C. Recent investigations in the theory of the formation of the cloud-drop spectra. Acta Meteor Sinica, 1962, 32(4): 267-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196204000.htm
|
[10] |
Zhou X J. The statistical theory of the precipitation of warm cloud. Acta Meteor Sinica, 1963, 33(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196301007.htm
|
[11] |
Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504
|
[12] |
Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605
|
[13] |
Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607
|
[14] |
Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 653-664. doi: 10.11898/1001-7313.20210307
|
[15] |
Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010.
|
[16] |
Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015
|
[17] |
Zhang J H. Summary of medium cloud chamber technical features. J Appl Meteor Sci, 1986, 1(2): 221-224.
|
[18] |
Feng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm
|
[19] |
Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi: 10.11898/1001-7313.20210602
|
[20] |
Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-721. http://qikan.camscma.cn/article/id/200705108
|
[21] |
Su Z J, Zheng G G, Guan L Y, et al. A New 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteor, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm
|
[22] |
Feng D X, Chen R Z, Jiang G W, et al. A laboratory study on the nucleating properties of three agi-type aerosols under water sub-saturation. J Appl Meteor Sci, 1990, 1(1): 57-62. http://qikan.camscma.cn/article/id/19900110
|
[23] |
Chen R Z, Feng D X, Jiang G W, et al. A laboratory study of explosion effects on cloud droplets coalescence. J Appl Meteor Sci, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468
|
[24] |
Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
|
[25] |
Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161.
|
[26] |
Wex H, Stratmann F, Topping D, et al. The Kelvin versus the Raoult term in the Köhler equation. J Atmos Sci, 2008, 65: 4004-4015.
|
[27] |
Davidovits P, Kolb C E, Williams L R, et al. Mass accommodation and chemical reactions at gas-liquid interfaces. Chem Rev, 2006, 106(4): 1323-1354.
|
[28] |
Chang K, Bench J, Brege M, et al. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The π chamber. Bull Amer Meteor Soc, 2016, 97(12): 2343-2358.
|
[29] |
Rogers D C. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos Res, 1988, 22: 149-181.
|
[30] |
Bailey M, Hallett J. Nucleation effects on the habit of vapor grown ice crystals from -18° to -42℃. Quart J Roy Meteor Soc, 2002, 128: 1461-1483.
|
[31] |
Saunders C P R, Hosseini A S. A laboratory study of the effect of velocity on Hallett-Mossop ice crystal multiplication. Atmos Res, 2001, 59: 3-14.
|
[32] |
Raymond S, Durant A, Adam J, et al. Heterogeneous surface crystallization observed in undercooled water. J Phys Chem B, 2005, 109: 9865-9868.
|
[33] |
Möhler O. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos Chem Phys, 2003, 3: 211-223.
|
[34] |
Duplissy J. Results from the CERN pilot CLOUD experiment. Atmos Chem Phys, 2010, 10: 1635-1647.
|
[35] |
Tajiri T, Yamashita K, Murakami M, et al. A novel adiabatic-expansion-type cloud simulation chamber. J Meteor Soc Japan, 2013, 91: 687-704.
|
[36] |
Connolly P J, Emersic C, Field P R. A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos Chem Phys, 2012, 12: 2055-2076.
|
[37] |
DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets measured between -30℃ and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064.
|
[38] |
Song N, Lamb D. Experimental investigations of ice in supercooled clouds. Part 1: System description and growth of ice by vapor deposition. J Atmos Sci, 1994, 51: 91-103.
|
[39] |
Bigg E K. A new technic for counting ice-forming nuclei in aerosols. Tellus B, 1957, 394: 175-178.
|
[40] |
Su H, Yin Y, Lu C S, et al. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan Area. Chinese J Atmos Sci, 2014, 8(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402016.htm
|
[41] |
Yang S Z, Ma P M, You L G. A static diffusion chamber for detecting atmospheric ice nuclei by using filter technique. Acta Meteor Sinica, 1995, 53(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.011.htm
|
[42] |
Mason B J. The Physics of Clouds(Second Edition). Oxford: Oxford University Press, 1957.
|
[43] |
Nolan P J, Pollak L W. The calibration of a photoelectric nucleus counter. Proc R Ir Acad, 1946, A51: 9-34.
|
[44] |
Warner J. An instrument for the measurement of freezing nucleus concentration. Bull Obs Puy de Dôme, 1957, 5: 33-43.
|
[45] |
Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608
|
[46] |
Sheng P X, Mao J T, Li J G, et al. Atmospheric Physics. Beijing: Peking University Press, 2013.
|
[47] |
Murphy D M, Koop T. Review of the vapor pressures of ice and supercooled water for atmospheric applications. Quart J Roy Meteror Soc, 2005, 131: 1539-1565.
|
[48] |
Twomey S. Pollution and the planetary albedo. Atmos Environ, 1974, 8: 1251-1256.
|
[49] |
Toll V, Christensen M, Quaas J, et al. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature, 2019, 572: 51-55.
|
[50] |
Lebsock M D, Stephens G L, Kummerow C. Multi-sensor satellite observations of aerosol effects on warm clouds. J Geophys Res, 2008, 113. DOI: 10.1029/2008JD009876.
|
[51] |
Chen Y C, Christensen M W, Stephens G L, et al. Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds. Nature Geoscience, 2014, 7: 643-646.
|
[52] |
Deng Z Z, Zhao C S, Ma N, et al. A method for measuring aerosol activation ratios with high size resolution. Acta Scientiarum Naturalium Universitaties Peknensis, 2012, 48(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203009.htm
|
[53] |
Deng Z Z, Zhao C S, Ma N, et al. An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos Chem Phys, 2013, 13: 6227-6237.
|
[54] |
Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Nature, 2006, 312: 1375-1378.
|