Li Ruijie, Huang Mengyu, Ding Deping, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. DOI:  10.11898/1001-7313.20230503.
Citation: Li Ruijie, Huang Mengyu, Ding Deping, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. DOI:  10.11898/1001-7313.20230503.

Warm Cloud Size Distribution Experiment Based on 70 m3 Expansion Cloud Chamber

DOI: 10.11898/1001-7313.20230503
  • Received Date: 2023-05-04
  • Rev Recd Date: 2023-08-13
  • Publish Date: 2023-09-30
  • To better understand the influence of aerosols on micro-properties of clouds and to facilitate weather modification experiments including the analysis of various materials' seeding effect on clouds and precipitation, Beijing Weather Modification Center has taken a decisive step forward by constructing an advanced facility known as Beijing aerosol and cloud interaction chamber (BACIC) in suburban Pinggu district. Boasting an impressive volume of 70 m3, BACIC is not only the largest of its kind in operation in China, but also a testament to the scale of the country's commitment to this sphere of atmospheric science. The enormity of the chamber's capacity facilitates the performance of a broad spectrum of investigations, thus enhancing the comprehensiveness and reliability of the results obtained.Inside BACIC, advanced instrumentation allows for the meticulous measurement and control of temperature, relative humidity, and background aerosol concentration. During 2019-2021, the chamber's capabilities extend further, as demonstrated by successful tests of its ability to create liquid and mixed-phase clouds. These attributes, combined with its capacity to control the cloud droplet size distribution as proved by comparative experiments involving changes in expansion rate and aerosol number concentration, solidify BACIC's standing as a prime location for warm cloud experimentation. The chamber has also been utilized to investigate effects of anthropogenic pollution over North China Plain (NCP) on cloud microphysics. Using ambient air and manipulating the expansion rate, a significant correlation is discovered between such pollution and the size distribution of cloud droplets. Interestingly, while an increase in aerosol leads to higher number of cloud droplets, it also causes a decrease in droplet size, typically within the range of 5-8 μm. Furthermore, an increase in aerosol number concentration leads to a decrease in the activation rate of aerosols into cloud droplets. This activation rate is around 10% for aerosol concentrations less than 5000 cm-3, and remains stable even when the aerosol concentration increases to 10000 cm-3.BACIC is also proved useful in conducting warm cloud expansion experiments involving different hygroscopic materials. It shows that the distribution of submicron (less than 1 μm) hygroscopic catalysts in a polluted environment leads to narrowing of the cloud droplet spectrum. It suggests that for the purpose of artificially reducing warm clouds or fog, it is recommended to use larger particle sizes. The results obtained from these diverse series of experiments have significantly contributed to theoretical knowledge and provide practical guidance for the ongoing development of artificial weather modification techniques.
  • Fig. 1  Pressure and temperature(a), cloud droplet number concentration(b), and cloud droplet spectrum(c) of expansion warm cloud in BACIC

    Fig. 2  Size distribution of warm cloud droplets for different rising speed

    (①-④ corresponding to rising speed of 14.3,9.13,6.28,2.09 m·s-1, respectively)

    Fig. 3  Size distribution of warm cloud droplets and liquid water content for different aerosol number concentration

    Fig. 4  Relationship between cloud number concentration and aerosol number concentration

    Fig. 5  Relationship between activation ratio and aerosol number concentration

    Fig. 6  Relationship between activation ratio and rising speed

    Fig. 7  Size distribution of warm cloud droplets under polluted and clean conditions

    Fig. 8  Air temperature variation of adiabatic expansion experiment in BACIC

    Table  1  List of successfully operated cloud chambers

    云室所属机构 类型 国别 运行情况 研究方向
    卡尔斯鲁厄理工学院[33] 膨胀云室 德国 1996年至今 沙尘冰核特性、同质核化、云辐射特性
    密歇根州立大学[28] 湍流混合云室 美国 2016年至今 湍流对云滴谱影响
    欧洲核子研究中心[34] 膨胀云室 瑞士 2006年至今 气溶胶新粒子生成及有机气溶胶作为冰核特性
    日本气象研究所[35] 动力云室 日本 2012年至今 云微物理测量
    曼彻斯特大学[36] 膨胀云室 英国 2009年至今 冰核核化和起电机制
    科罗拉多州立大学[37] 动力云室 美国 已停用 云微物理(冰核)
    宾州州立大学[38] 混合云室 美国 已停用 云化学
    DownLoad: Download CSV

    Table  2  Performance indices of BACIC

    指标 参数
    形状 圆柱形
    材料 316L型不锈钢
    体积 70 m3
    表面积 118.4 m2
    直径 2.6 m
    高度 14 m
    温度范围 -45℃至室温
    压力范围 1 hPa~常压
    成云方式 膨胀成云
    洁净度 小于10 cm-3
    DownLoad: Download CSV

    Table  3  Simulated rising speed corresponding to depressurization rates

    减压速度/(hPa·min-1) 上升速度/(m·s-1)
    84 14.30
    54 9.13
    36 6.28
    12 2.09
    DownLoad: Download CSV
  • [1]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [2]
    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
    [3]
    Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202
    [4]
    Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi:  10.11898/1001-7313.20210608
    [5]
    Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1149-1152. doi:  10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    [6]
    Koo C C, Chen Y J, Xu N Z, et al. Preliminary Analysis of the Physical Observations of Cloud, Fog and Precipitation in Hengshan Mountain from March to August in 1960)//Physical Characteristics of Cloud, Fog and Precipitation in China. Beijing: Science Press, 1962: 2-21.
    [7]
    Zhan L S. The Summarize of the Observation of Big Size Cloud Droplets at Hengshan Mountain from October to May in 1961//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 47-50.
    [8]
    Zhan L S, Chen W K, Huang M Y. The Preliminary Analysis of the Observation of Fluctuation of Cloud Size Distribution at Hengshan and Taishan Mountain//The Characteristic of Cloud and Precipitation of China. Beijing: Science Press, 1962: 30-40.
    [9]
    Koo C C. Recent investigations in the theory of the formation of the cloud-drop spectra. Acta Meteor Sinica, 1962, 32(4): 267-284. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196204000.htm
    [10]
    Zhou X J. The statistical theory of the precipitation of warm cloud. Acta Meteor Sinica, 1963, 33(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196301007.htm
    [11]
    Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi:  10.11898/1001-7313.20220504
    [12]
    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [13]
    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [14]
    Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 653-664. doi:  10.11898/1001-7313.20210307
    [15]
    Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010.
    [16]
    Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015
    [17]
    Zhang J H. Summary of medium cloud chamber technical features. J Appl Meteor Sci, 1986, 1(2): 221-224.
    [18]
    Feng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm
    [19]
    Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602
    [20]
    Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-721. http://qikan.camscma.cn/article/id/200705108
    [21]
    Su Z J, Zheng G G, Guan L Y, et al. A New 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteor, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm
    [22]
    Feng D X, Chen R Z, Jiang G W, et al. A laboratory study on the nucleating properties of three agi-type aerosols under water sub-saturation. J Appl Meteor Sci, 1990, 1(1): 57-62. http://qikan.camscma.cn/article/id/19900110
    [23]
    Chen R Z, Feng D X, Jiang G W, et al. A laboratory study of explosion effects on cloud droplets coalescence. J Appl Meteor Sci, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468
    [24]
    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
    [25]
    Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161.
    [26]
    Wex H, Stratmann F, Topping D, et al. The Kelvin versus the Raoult term in the Köhler equation. J Atmos Sci, 2008, 65: 4004-4015.
    [27]
    Davidovits P, Kolb C E, Williams L R, et al. Mass accommodation and chemical reactions at gas-liquid interfaces. Chem Rev, 2006, 106(4): 1323-1354.
    [28]
    Chang K, Bench J, Brege M, et al. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The π chamber. Bull Amer Meteor Soc, 2016, 97(12): 2343-2358.
    [29]
    Rogers D C. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos Res, 1988, 22: 149-181.
    [30]
    Bailey M, Hallett J. Nucleation effects on the habit of vapor grown ice crystals from -18° to -42℃. Quart J Roy Meteor Soc, 2002, 128: 1461-1483.
    [31]
    Saunders C P R, Hosseini A S. A laboratory study of the effect of velocity on Hallett-Mossop ice crystal multiplication. Atmos Res, 2001, 59: 3-14.
    [32]
    Raymond S, Durant A, Adam J, et al. Heterogeneous surface crystallization observed in undercooled water. J Phys Chem B, 2005, 109: 9865-9868.
    [33]
    Möhler O. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos Chem Phys, 2003, 3: 211-223.
    [34]
    Duplissy J. Results from the CERN pilot CLOUD experiment. Atmos Chem Phys, 2010, 10: 1635-1647.
    [35]
    Tajiri T, Yamashita K, Murakami M, et al. A novel adiabatic-expansion-type cloud simulation chamber. J Meteor Soc Japan, 2013, 91: 687-704.
    [36]
    Connolly P J, Emersic C, Field P R. A laboratory investigation into the aggregation efficiency of small ice crystals. Atmos Chem Phys, 2012, 12: 2055-2076.
    [37]
    DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets measured between -30℃ and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064.
    [38]
    Song N, Lamb D. Experimental investigations of ice in supercooled clouds. Part 1: System description and growth of ice by vapor deposition. J Atmos Sci, 1994, 51: 91-103.
    [39]
    Bigg E K. A new technic for counting ice-forming nuclei in aerosols. Tellus B, 1957, 394: 175-178.
    [40]
    Su H, Yin Y, Lu C S, et al. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan Area. Chinese J Atmos Sci, 2014, 8(2): 386-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201402016.htm
    [41]
    Yang S Z, Ma P M, You L G. A static diffusion chamber for detecting atmospheric ice nuclei by using filter technique. Acta Meteor Sinica, 1995, 53(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB501.011.htm
    [42]
    Mason B J. The Physics of Clouds(Second Edition). Oxford: Oxford University Press, 1957.
    [43]
    Nolan P J, Pollak L W. The calibration of a photoelectric nucleus counter. Proc R Ir Acad, 1946, A51: 9-34.
    [44]
    Warner J. An instrument for the measurement of freezing nucleus concentration. Bull Obs Puy de Dôme, 1957, 5: 33-43.
    [45]
    Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608
    [46]
    Sheng P X, Mao J T, Li J G, et al. Atmospheric Physics. Beijing: Peking University Press, 2013.
    [47]
    Murphy D M, Koop T. Review of the vapor pressures of ice and supercooled water for atmospheric applications. Quart J Roy Meteror Soc, 2005, 131: 1539-1565.
    [48]
    Twomey S. Pollution and the planetary albedo. Atmos Environ, 1974, 8: 1251-1256.
    [49]
    Toll V, Christensen M, Quaas J, et al. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature, 2019, 572: 51-55.
    [50]
    Lebsock M D, Stephens G L, Kummerow C. Multi-sensor satellite observations of aerosol effects on warm clouds. J Geophys Res, 2008, 113. DOI:  10.1029/2008JD009876.
    [51]
    Chen Y C, Christensen M W, Stephens G L, et al. Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds. Nature Geoscience, 2014, 7: 643-646.
    [52]
    Deng Z Z, Zhao C S, Ma N, et al. A method for measuring aerosol activation ratios with high size resolution. Acta Scientiarum Naturalium Universitaties Peknensis, 2012, 48(3): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201203009.htm
    [53]
    Deng Z Z, Zhao C S, Ma N, et al. An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain. Atmos Chem Phys, 2013, 13: 6227-6237.
    [54]
    Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Nature, 2006, 312: 1375-1378.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(3)

    Article views (400) PDF downloads(68) Cited by()
    • Received : 2023-05-04
    • Accepted : 2023-08-13
    • Published : 2023-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint