性能参数 | 取值 |
发射频率 | 24.230 GHz |
操作模式 | FMCW |
发射功率 | 50 mW(+17 dBm) |
波束宽度 | 1.5° |
时间分辨率 | 10 s(最低1 s) |
高度分辨率 | 10~200 m(可调节) |
距离库数 | 128(可调节) |
Citation: | Wen Jiaqi, Wang Gaili, Zhou Renran, et al. Vertical structure characteristics of precipitation in Mêdog area of southeastern Tibet during the monsoon period. J Appl Meteor Sci, 2023, 34(5): 562-573. DOI: 10.11898/1001-7313.20230505. |
Table 1 Main performance parameters of micro rain radar
性能参数 | 取值 |
发射频率 | 24.230 GHz |
操作模式 | FMCW |
发射功率 | 50 mW(+17 dBm) |
波束宽度 | 1.5° |
时间分辨率 | 10 s(最低1 s) |
高度分辨率 | 10~200 m(可调节) |
距离库数 | 128(可调节) |
Table 2 Classification of rain types
降水类型 | 样本 | 降水量 | 降水率/(mm·h-1) | |||
数量 | 占比/% | 数值/mm | 占比/% | |||
对流云降水 | 1933 | 6.7 | 363.32 | 32.03 | 11.27 | |
层状云降水 | 25485 | 88.4 | 747.53 | 65.90 | 1.74 | |
浅层云降水 | 1417 | 4.9 | 23.55 | 2.07 | 0.99 |
[1] |
Milbrandt J A, Yau M K.A multimoment bulk microphysics parameterization.Part Ⅰ:Analysis of the role of the spectral shape parameter.J Atmos Sci, 2005, 62(9):3051-3064. doi: 10.1175/JAS3534.1
|
[2] |
Zhang G F, Sun J Z, Brandes E A. Improving parameterization of rain microphysics with disdrometer and radar observations. J Atmos Sci, 2019, 63(4): 1273-1290.
|
[3] |
Shang B, Zhou Y Q, Liu J Z, et al. Comparing vertical structure of precipitation cloud and non-precipitation cloud using Cloudsat. J Appl Meteor Sci, 2012, 23(1): 1-9. doi: 10.3969/j.issn.1001-7313.2012.01.001
|
[4] |
Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteor Climatol, 2007, 46(11): 1777-1791. doi: 10.1175/2007JAMC1649.1
|
[5] |
Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteor Soc Japan Ser Ⅱ, 2013, 91(2): 215-227. doi: 10.2151/jmsj.2013-208
|
[6] |
Liu C Z, Zhou Y J, Gu J, et al. Characteristics of raindrop size distribution in Chengdu. J Appl Meteor Sci, 2015, 26(1): 112-121. doi: 10.11898/1001-7313.20150112
|
[7] |
Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111
|
[8] |
Huang Z W, Peng S Y, Zhang H R, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi: 10.11898/1001-7313.20220207
|
[9] |
Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi: 10.11898/1001-7313.20210605
|
[10] |
Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi: 10.11898/1001-7313.20220202
|
[11] |
Feng Q J, Li P R, Ding J F, et al. Observation and analysis of microphysical characteristics of stratiform cloud precipitation in Shanxi Province. Trans Atmos Sci, 2013, 36(5): 537-545. doi: 10.3969/j.issn.1674-7097.2013.05.003
|
[12] |
Chen S J, Zheng J F, Yang J, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441. doi: 10.11898/1001-7313.20220404
|
[13] |
Das S, Maitra A. Vertical profile of rain: Ka band radar observations at tropical locations. J Hydrol, 2016, 534: 31-41. doi: 10.1016/j.jhydrol.2015.12.053
|
[14] |
Song C, Zhou Y Q, Wu Z H. Vertical profile of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi: 10.11898/1001-7313.20190408
|
[15] |
Wen L, Zhao K, Wang M Y, Zhang G F. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362.
|
[16] |
Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607
|
[17] |
Zhao Y F, Wang D H, Yin J F. A study on cloud microphysical characteristics over the tibetan plateau using CloudSat data. J Trop Meteor, 2014, 30(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201402005.htm
|
[18] |
Liu L P, Zheng J F, Ruan Z, et al. The preliminary analyses of the cloud properties over Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars. Acta Meteor Sinica, 2015, 73(4): 635-647. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504003.htm
|
[19] |
Chang Y, Guo X L. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chinese Sci Bull, 2016, 61(15): 1706-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201615011.htm
|
[20] |
Zhang W X, Zhang L X, Zhou T J. Interannual variability and the underlying mechanism of summer precipitation over the Yarlung Zangbo River Basin. Chinese J Atmos Sci, 2016, 40(5): 965-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605007.htm
|
[21] |
Wang G L, Zhou R R, Zhaxi S L, et al. Comprehensive observations and preliminary statistical analysis of clouds and precipitation characteristics in Motuo of Tibet Plateau. Acta Meteor Sinica, 2021, 79(5): 841-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105010.htm
|
[22] |
Zhou R R. Comprehensive Observation and Cloud Characteristics Analysis of Cloud Precipitation in Southeastern Qinghai Tibet Plateau. Beijing: Chinese Academy of Meteorological Sciences, 2021.
|
[23] |
Zhang J Y, Wang G L, Zheng J F, et al. Study of the microphysical characteristics of weak precipitation in Mêdog southeastern Tibetan Plateau using Ka-band cloud radar. Chinese J Atmos Sci, 2022, 46(5): 1239-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202205010.htm
|
[24] |
Li R, Wang G L, Zhou R R, et al. Seasonal variation in microphysical characteristics of precipitation at the entrance of water vapor channel in Yarlung Zangbo Grand Canyon. Remote Sens, 2022, 14(13). DOI: 10.3390/rs14133149.
|
[25] |
Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air. J Atmos Sci, 1949, 6(4): 243-248.
|
[26] |
Foote G B, Toit P. Terminal velocities of raindrops aloft. J Appl Meteor, 1969, 8: 249-253.
|
[27] |
Peters G, Fischer B, Clemens M. Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions. J Atmos Oceanic Technol, 2010, 27(5): 829-842.
|
[28] |
Peters G, Fischer B, Andersson T. Rain observations with a vertically looking micro rain radar(MRR). Boreal Env Res, 2002, 7(4): 353-362.
|
[29] |
Huo Z, Ruan Z, Wei M, et al. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res, 2019, 222: 47-61. http://www.xueshufan.com/publication/2912765457
|
[30] |
Atlas D, Srivastava R C, et al. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35.
|
[31] |
Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365.
|
[32] |
Tokay A, Bashor P G. An experimental study of small-scale variability of raindrop size distribution. J Appl Meteor Climatol, 2010, 49(11): 2348-2365.
|
[33] |
Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282.
|
[34] |
Fabry F, Zawadzki I. Long-term radar observations of the melting layer of precipitation and their interpretation. J Atmos Sci, 1995, 52(7): 838-851.
|
[35] |
Habib E, Krajewski W F, Kruger A. Sampling errors of tipping-bucket rain gauge measurements. J Hydrol Eng, 2001, 6(2): 159-166.
|
[36] |
Peters G, Fischer B, Munster H, et al. Profiles of raindrop size distributions as retrieved by micro rain radars. J Appl Meteor Climatol, 2005, 44(12): 1930-1949.
|
[37] |
Barros A P, Joshi M, Putkonen J, et al. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys Res Lett, 2000, 27(22): 3683-3686.
|
[38] |
Cha J W, Chang K H, Yum S S, et al. Comparison of the bright band characteristics measured by micro rain radar(MRR) at a mountain and a coastal site in South Korea. Adv Atmos Sci, 2009, 26: 211-221.
|
[39] |
Morrison H, Tessendorf S A, Ikeda K, et al. Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon Wea Rev, 2012, 140(8): 2437-2460.
|